学科分类
/ 25
500 个结果
  • 简介:运动引起心肌肥大的产生及发展机制已有近百年的研究历史,并且一直是备受运动医学界关注的热点课题.国内外已有许多专家学者已就心肌肥大的刺激因素,如机械因素、血流动力学因素、神经内分泌因素、遗传因素等进行了较深入的研究.仅从运动性心肌肥大的生物学机制方面,就诱导其发生的刺激因素及其信号转导通路、基因表达等几个方面加以综述.

  • 标签: 运动性心肌肥大 神经内分泌 信号转导通路 基因表达
  • 简介:目的研究加压素对大鼠内耳细胞信号转导有关基因表达的影响,探讨加压素引起膜迷路积水的发生机制.方法大鼠腹腔注射精氨酸加压素50μg/kg,每天1次,共1周;取出听泡,提取内耳总RNA,逆转录成cDNA并标记;然后和大鼠cDNA芯片杂交,显示加压素注射前后大鼠内耳mRNA表达强度变化.结果筛选出和细胞信号转导有关的差异表达基因10条,Ratio>5的上调的基因有Chnl,Pak3和Ptprc.结论加压素可能从细胞信号转导基因表达方面影响内耳的液体平衡,从而导致膜迷路积水.

  • 标签: 加压素 内耳 膜迷路积水 细胞信号转导 CDNA芯片
  • 简介:近来,骨骼肌葡萄糖转运的细胞信号转导机制研究十分活跃,但运动刺激骨骼肌葡萄糖转运的信号机制尚不明了。文章就运动刺激骨骼肌葡萄糖转运的胰岛素信号转导途径和非胰岛索信号转导途径两大方面的研究进展进行了综述(重点在非胰岛素途径),并对二者的交叉作用作简要介绍,以促进对运动调节骨骼肌葡萄糖转运信号转导机制的深入研究。

  • 标签: 运动 骨骼肌 葡萄糖转运 信号转导
  • 简介:细胞信号转导异常往往与人类疾病的发生、发展密切相关。一些病毒致病和感染机制即为病毒抗原蛋白作用宿主细胞信号转导途径,导致宿主细胞信号转导发生紊乱。丙型肝炎病毒(HCV)是引发慢性丙型肝炎,导致肝硬化和肝细胞癌发生的主要病原体,但目前HCV的致病机制与宿主内持续感染机制尚不清楚。HCV致病机制可能与HCV表达的蛋白质干扰宿主细胞信号转导途径而导致异常的细胞信号转导有关。研究HCV蛋白对宿主细胞信号转导途径的影响不仅有助于阐明其致病机制,还能为新药设计和寻找新的治疗方法提供新思路和新靶点。本文主要综述了近年来国内外有关HCV蛋白作用细胞信号转导途径的研究进展。

  • 标签: 丙型肝炎病毒 细胞信号转导 核心蛋白 包膜蛋白E2 非结构蛋白NS3 非结构蛋白NS5A
  • 简介:被称作T细胞的免疫细胞在身体抵抗感染和癌症的能力中发挥着至关重要的作用。然而,几十年来,导致T细胞活化的分子信号转导过程的详细信息仍然是一个谜。在一项新的研究中,来自美国国家卫生研究院和加州大学圣克鲁兹分校的研究人员首次描述了T细胞受体识别一种抗原(如病毒蛋白)从而触发导致一种免疫反应的前几个步骤发生的机制。

  • 标签: 细胞信号转导 免疫反应 Nat T细胞活化 T细胞受体 免疫细胞
  • 简介:一、破骨细胞破骨细胞(osteoclast,OC)是由单核/巨噬形成的一种多核细胞,细胞家族中的单核细胞细胞融合后形成的一种多核细胞,巨噬细胞变成具有骨吸收能力的OC必须要有骨髓基质细胞/成骨细胞(osteoblast,OB)的存在[1].骨髓基质细胞/OB表达两个促进OC生成所必须的分子:一个是巨噬细胞集落刺激因子(macrophagecolony-stlimulatingfactor,MCSF),另一个是激活核因子NF-κB受体的配体(receptoractivatorofnuclearkappaBligand,RANKL)[2].在骨髓基质细胞和OB的存在下,M-CSF和RANKL分别与OC前体细胞上各自的受体结合并诱导其分化为成熟的OC.

  • 标签: 破骨细胞 MAPK信号转导 OC 骨髓基质细胞 核细胞 OB
  • 简介:垂体瘤发生率占颅内肿瘤的第3位,因其细胞增殖及内分泌特性而表现出各种的生物学行为。随着分子生物学的发展,对垂体瘤发病机制的认识已有了很大的提高。垂体瘤的发生、生长与细胞信号转导通路存在密切的相关性,对信号转导通路特殊靶点的干预可能为垂体瘤提供新的治疗机会。本文重点综述了细胞信号转导通路与垂体瘤发病机制相关性研究方面的进展。

  • 标签: 垂体腺瘤 发病机制 信号转导通路
  • 简介:病理性疼痛,包括由组织损伤诱导的炎症性疼痛和神经损伤诱导的神经病理性疼痛,是神经元可塑性改变的产物,其中重要的一点是伤害性刺激的持续传入使骨髓内伤害性神经元的兴奋性增强,此中枢的敏化是由于细胞内酶级联反应导致主要的膜受体和通道的磷酸化,引起活性依赖性的可塑性改变所致;或以转录依赖性的方式使递质、离子通道表达数量或结构上发生长时间的改变所致。各种信号转导通路可进行翻译后加工的调节和某些关键基因产物的转录后调节来调控长时程的痛觉过敏,其中MAPK的激活是中枢敏化的关键。因此对伤害性神经无信号转导通路的特异性药物干预可能作为一种新的病理性疼痛的治疗手段。

  • 标签: 病理性疼痛 MAPK 中枢敏化 神经元可塑性 信号转导
  • 简介:摘要目的探究在安全、可接受的不同波长激光信号作用下小鼠螺旋神经节细胞信号转导功能的反应。方法离体培养小鼠螺旋神经节细胞,给予特异性荧光指示剂染色标记、光学显微镜下形态观察、钙离子Fura-2荧光激发、在成像视野中选取形态结构完整的测试细胞以及固定光纤等处理,采用可见光(波长450 nm)和近红外光(波长808 nm、1 065 nm)三种波长的激光信号对螺旋神经节细胞分别辐照,用钙离子成像仪对细胞内钙离子浓度进行监测。结果小鼠螺旋神经节细胞在波长450 nm激光辐照下细胞内钙离子浓度明显上升,而在其他两种波段的激光照射下,螺旋神经节细胞未呈现钙离子浓度的明显变化。螺旋神经节细胞这种反应的强弱与光纤所处位置有关,越靠近光纤口的细胞产生的钙离子浓度变化越明显,而远离光纤口的细胞,尽管发生钙离子浓度变化的次数基本一致,但每一次变化的幅度较弱。结论小鼠螺旋神经节细胞在光信号作用下具有诱发信号转导反应的可能,而且该反应具有激光波长选择性。

  • 标签: 钙离子成像 激光 螺旋神经节
  • 简介:摘要目的探讨溴结构域的蛋白9(BRD9)在神经胶质瘤细胞中的作用及对细胞细胞因子信号转导抑制因子3(SOCS3)/信号转导与转录激活因子3(STAT3)信号转导的调控作用。方法利用实时荧光定量聚合酶链反应(PCR)法和蛋白质印迹法(Western blot)检测SVGP12、U118和U87细胞BRD9 mRNA和蛋白表达水平,利用脂质体法将对照短发卡RNA(shRNA)和BRD9 shRNA转染U87细胞,噻唑蓝(MTT)法检测细胞增殖能力,平板克隆形成实验检测细胞克隆形成能力,小室迁移(Transwell)试验检测细胞迁移,Western blot检测裂解半胱氨酰天冬氨酸特异性蛋白酶(Caspase)-3、B细胞淋巴瘤/白血病-2相关X蛋白(bax)、SOCS3、STAT3、磷酸化STAT3等蛋白表达。多组间比较采用双因素方差分析或克鲁斯卡尔-沃利斯(Kruskal-Wallis)秩和检验。结果U118和U87细胞BRD9表达高于SVGP12细胞(mRNA水平,3.096±0.281、2.719±0.474比1.010±0.031,χ2=5.956,P<0.01;蛋白水平,0.829±0.040、1.115±0.092比0.108±0.025,χ2=7.200,P<0.01)。敲减BRD9表达细胞增殖低于对照组和Control shRNA组(24 h,0.137±0.031比0.209±0.051、0.191±0.032;48 h,0.169±0.036比0.313±0.053、0.286±0.035;72 h,0.208±0.042比0.409±0.062、0.378±0.053,F=3.729,P<0.01)、细胞克隆形成能力低于对照组和Control shRNA组(80.000±4.583比159.300±10.210、160.300±10.260,χ2=5.422,P<0.01)、细胞迁移低于对照组和Control shRNA组(28.670±3.512比69.330±4.509、57.330±4.041,χ2=7.200,P<0.01)、上调裂解Caspase-3(1.358±0.038比0.723±0.014、0.677±0.014,χ2=7.200,P<0.01)、bax(1.987±0.080比0.553±0.047、0.736±0.019,χ2=7.200,P<0.01)和SOCS3蛋白(1.510±0.033比0.865±0.024、0.841±0.037, χ2=5.956,P<0.01)表达高于对照组和Control shRNA组,磷酸化STAT3蛋白低于对照组和Control shRNA组(0.128±0.021比0.289±0.026、0.262±0.018,χ2=6.489,P<0.01),差异均有统计学意义。结论敲减BRD9抑制神经胶质瘤细胞增殖和迁移,促进凋亡相关蛋白表达,并调节细胞内SOCS3/STAT3信号转导

  • 标签: 神经胶质瘤 增殖 迁移
  • 简介:生物体内的各种组织细胞数量是保持相对稳定的,稳定的维持有赖于各类细胞受控制地分裂、分化和死亡。创伤后受损伤组织细胞的大量死亡以及释放出的信号导致细胞间平衡破坏,这种平衡关系将通过细胞的分裂、分化和程序性死亡作重新调整,直到组织完全愈合后,重新建立新的平衡关系。细胞间的信号交换、跨膜传导和细胞信号转导,是实现组织创伤愈合全过程的物质基础和自动控制体系。细胞分裂增殖有赖于细胞周期的循环,

  • 标签: 烧伤 衔接蛋白质类 信号转导 伤口愈合
  • 简介:信号通路是目前癫痫研究的主要方向,尤其是丝裂原活化蛋白激酶家族(mitogenactivatedproteinkinases,MAPKs)。该家族包括细胞信号激酶(extracellularsignal-regulatedproteinkinase,ERK)、c-Jun氨基端激酶(c-JunN-terminalkinase,JNK)、p38等,其在神经系统中广泛表达,受各种细胞外刺激.影响突触传递、神经重塑、形态分化和存活等,造成神经元的凋亡、苔藓纤维出芽、胶质增生等病理改变。近年来,有关JNK信号通路在神经元生长、分化以及神经元凋亡等领域的研究方兴未艾.而神经元的极性、细胞形态改变在癫痫后的各种病理变化中起着至关重要的作用。本文就JNK及其在癫痫发病过程中的潜在机制(凋亡和神经塑性)做一综述。

  • 标签: 癫痫 C-JUN氨基端激酶 信号转导通路 细胞凋亡 神经塑性
  • 简介:作为植物体内的一种光受体,光敏色素在植物的光形态建成过程中意义重大.植物光敏色素及由它介导的信号传导途径是目前细胞生物学、发育生物学和分子生物学研究的热点之一.本文介绍了光敏色素的分子特性、生理功能和信号转导途径等方面的研究进展.

  • 标签: 光敏色素 信号转导 光形态建成
  • 简介:骨骼的生长及代谢更新以不断适应力学刺激为前提,运动通过施加于骨骼的负荷刺激促进骨骼的改造,这种力的转导过程以力学感受系统为结构基础,借助相关信号因子的作用,通过相应路径,将各种力学刺激转化并进行传递,最终影响基因的表达或蛋白的激活,从而实现对骨骼形态结构及骨量的调控。

  • 标签: 代谢 力学刺激 力学感受系统 信号因子 力学转导途径
  • 简介:摘要病理性疼痛中枢敏感化这一现象的出现和持续过程中涉及到诸多的信号转导分子,这些转导分子在的产生和持续过程病理性疼痛中枢敏感化的形成、持续以及传递过程会有不同的作用。通过分析不同转导分在所起到的作用有利于提高对中枢神经系统与疼痛的产生以及传递之间的关系。本文主要分析研究了一氧化氮/环磷酸鸟苷信号转导系统、丝裂原活化蛋白激酶以及核转录因子所起到的不同作用及其作用机理。

  • 标签: 病理性疼痛 中枢敏感化 信号转导
  • 简介:目的检测γδT细胞信号转导分子ζ链相关蛋白-70(ζ-chainassociatedprotein70,ZAP.70)。方法分离获取健康人PBMC,用结核杆菌低分子多肽抗原(Mtb.Ag)刺激PBMC,通过流式细胞仪检测总T细胞和丫6T细胞CD69分子的动态表达;Mtb-Ag活化俩T细胞增殖培养,10d后收集细胞,用免疫磁珠阳性分选法分离获取高纯度的γδT细胞;westernblot方法检测γδT细胞内的ZAP.70分子。结果总T细胞和γδT细胞均在活化刺激24h时表达CD69分子达高峰,但总T细胞仅为16%,γδT细胞可达75.2%;新鲜分离的PBMC中γδT细胞的比例仅为4.9%,Mtb-Ag刺激培养10d后升为69.2%,免疫磁珠阳性分选后达99-3%;检测到Y6T细胞内的ZAP-70分子。结论Mtb-Ag可特异性激活俩T细胞,用Mtb-Ag刺激γδT细胞活化增殖培养,可获得大量的γδT细胞;成功地检测到细胞内ZAP-70分子,这为Y6T细胞内其它分子的检测分析奠定方法学基础,也为进一步检测γδT细胞活化信号转导过程中ZAP-70分子的激活及作用奠定基础。

  • 标签: Mtb-Ag ΓΔT细胞 ZAP-70
  • 简介:Notch蛋白及其配体在进化上是保守的信号转导系统,本文阐述了Notch蛋白及其配体在淋巴细胞发育中的重要作用。

  • 标签: NOTCH 信号转导 淋巴细胞发育
  • 简介:心肌细胞膜上的L型Ca^2+通道具有重要的生理意义,尤其在信号转导中发挥重要作用。近年来,由于膜片钳与分子生物学技术的发展,人们对离子通道的认识更加深入。有关L型Ca^2+通道的信号转导途径日渐清晰,本文分别在蛋白激酶A、蛋白激酶C、磷脂酰肌醇3激酶、G蛋白βγ亚基等途径对心肌L型Ca^2+通道调节信号转导的研究进展作一综述。

  • 标签: 心肌细胞 L型钙离子通道 结构 信号转导 蛋白激酶 磷脂酰肌醇3激酶
  • 简介:糖皮质激素(glucocorticoid,GC)是由肾上腺皮质分泌的甾体激素,糖皮质激素具有调节免疫、代谢、渗透压、生长发育等多种生理和药理作用,并参与行为和认知过程的调节。就糖皮质激素受体(GR)因子在GC信号通路中的地位、组成与分类、作用机制与结构特点、与临床疾病的关系及GR的最新研究进展作一综述。

  • 标签: 受体及信号转导(Receptor And Signal Transdution) 糖皮质激素(GC) 糖皮质激素受体(GR)
  • 简介:脑缺血后神经细胞可以呈现不同的死亡方式,如坏死、凋亡,或二者兼有。Necroptosis是新近发现的一种新的细胞死亡方式,同时具有细胞坏死和凋亡特征。而细胞凋亡的过程是可以调控的,其过程涉及BNIP3、聚ADP核糖聚合酶(PARP)和凋亡诱导因子(AIF)等多种信号转导激酶,应激信号的强度可能决定神经细胞的死亡方式。

  • 标签: 细胞死亡 NECROPTOSIS 信号转导