学科分类
/ 1
10 个结果
  • 简介:求解分层各向异性介质中非平稳随机波的传播问题.研究基岩受非平稳随机激励时地面的响应.运用精细积分法与扩展的Wittrick-Williams算法求解分层介质地基系统的固有频率和振型.再联合应用振型叠加法、虚拟激励法和精细积分方法求解分层各向异性介质中非平稳随机波传播问题的微分方程,以求得地面随机响应的功率谱密度.

  • 标签: 分层介质 精细积分 虚拟激励法 扩展Wittrick-Williams算法 波传播 随机振动
  • 简介:针对可分型矩阵的特性,结合2^N类算法为可分型指数矩阵的计算提出一种快速精细积分法.核心思想是:利用可分型矩阵中的子矩阵进行分块计算;增加Taylor展开式的保留项数,减少迭代次数.一方面,程序实现简便,另一方面,数值算例表明:对矩阵维数很大的可分型指数矩阵计算来说,本文的快速精细积分法减少了计算量和存储量,大大地提高了计算效率.

  • 标签: 可分型指数矩阵 2N类算法 快速精细积分法 子矩阵
  • 简介:首先利用哈密顿原理,将桥梁结构振动微分方程转化为哈密尔顿正则方程形式,然后将精细积分思想的算法引入到辛算法中,形成辛精细积分算法.在时间微段上,将非齐次项正弦/余弦化,得到了荷载识别的辛精细积分格式.与传统Runge-Kutta方法及荷载识别的精细积分格式相比,仿真算例表明本文算法不仅提高了识别精度,而且在长期定量计算中保持了辛算法的稳定性,计算结果不受积分步长的影响,因此可通过增大积分步长,缩短仿真时间,提高计算效率.

  • 标签: 荷载识别 桥梁结构 哈密尔顿系统 辛精细积分 移动荷载 Runge-Kutta方法
  • 简介:针对结构动力方程转化为状态空间方程后矩阵维数增加而导致计算量增大的问题,考虑状态空间方程中所含外部荷载的特点,提出了一种新的改进精细直接积分法.给出了利用梯形公式、复化梯形公式、辛普生公式、复化辛普生公式、科特斯公式、高斯公式计算杜哈姆积分时的计算格式,分析了不同计算格式下的计算精度和计算效率.数值算例表明本文改进方法的正确性.

  • 标签: 结构动力方程 直接积分 分块计算 精细积分 改进方法
  • 简介:随着行车速度与交通量不断增加,荷载不断加重,桥梁的移动荷载响应越来越得到人们的重视.考虑移动车辆的惯性效应与桥梁的阻尼效应时,需要把车辆荷载简化为移动质量进行研究,这时得到的控制方程是变系数偏微分方程,在数学上通常难以精确求解.经分离变量与模态叠加后,化为变系数常微分方程组.本文利用WKB法,得到了近似的动力学响应,并与数值解、移动常力、Inglis解进行了比较.

  • 标签: 简支梁 移动质量 WKB法
  • 简介:为了研究零质量射流的作用机理和流场结构,发展了一套面向二维零质量射流的非结构化动网格模拟方法:采用控制容积法,引入动网格控制方程,并与任意曲线坐标系下矩阵形式的时均可压缩N-S方程组联合求解,迭代过程中采用弹性类推法进行动态网格更新.基于此方法,对二维零质量射流进行数值模拟,对计算获得的流场涡线和流线分布进行了分析和讨论,并与其他学者类似算例进行了比较,表明该方法能够合理揭示零质量射流的流场结构和作用机理,可实现二维零质量射流的数值模拟.

  • 标签: 动网格 零质量射流 非定常流动 数值模拟
  • 简介:为了获得移动质量沿梁匀速运动的系统动态响应,建立了时空有限元数值求解模型.考虑移动质量惯性项,得到移动质量-梁时变系统的动力学方程.应用时空有限元法.得到了移动集中质量作用下Ber-noulli-Euler梁离散单元的质量矩阵、刚度矩阵.与Newmark-β法、Wilson-θ法计算结果进行比较,时空有限元法计算梁的动态响应的精度更高.

  • 标签: 移动质量 时空有限元法 数值分析
  • 简介:本文对带质量块的微型双稳态压电板进行动力学分析.以中心固支四边自由的带质量块微型压电层合板为研究对象,应用应变梯度理论考虑尺寸效应,综合考虑力、电、热耦合作用,采用VonKarman大变形理论,运用Hamilton原理建立非线性动力学方程.利用特征值法探究不同内禀长度和不同压电铺设面积的情况下,温度和电压对其固有频率和稳定性的影响.其次研究了不同外激励下系统的非线性动力学响应.通过本文的研究发现,随着压电铺设面积的增大,力、电、热耦合效应增强,对系统的稳定性影响越显著;通过研究温度和电压对系统振动幅值的影响为振动控制提供了理论依据.同时发现尺寸效应对结构刚度影响较大,验证了微型结构考虑尺度效应的必要性.本文的研究结果会为今后的工程实际应用提供一定的理论参考价值.

  • 标签: 双稳态板 应变梯度 力-电-热耦合 特征值法
  • 简介:传统航天器结构模态试验通常会用来检验结构有限元分析模型,但往往是通过人工调整有限元模型参数来修正模型,分析与试验联系不紧密,影响后续分析结果的精度、研制周期和经费等.为改变航天器模态分析及试验现状,文中介绍了模态分析-试验体系工程研制流程在理论上的可行性,并以某缩比舱段为例,基于Virtualab-Nastran软件平台,完整实施模态分析-试验体系过程,包括预试验分析、模态试验、模型修正等过程,紧密联系模态分析、试验,并依据试验结果准确快速修正有限元模型,使分析结果与试验接近,实现精确建模.

  • 标签: 模态分析 模态试验 模型修正 有限元