学科分类
/ 8
142 个结果
  • 简介:人类赖以生存的大气环境受到人类燃烧化石燃料和汽车尾气排放等人为活动的影响,其中大气中直径≤2.5μm的颗粒物(particulatematter)被称为PM2.5,由于其来源多样,生成理化过程复杂,有的PM2.5可能会因为带有毒性而引起人们的重视。全球对PM2.5的长期观测记录较少,近些年美国宇航局转发了加拿大两位科学家的研究,他们根据美国宇航局的卫星资料反演得到2001—2006年平均全球PM2.5浓度分布(图1),从图中可以看到,从中国东部到非洲北部撒哈拉沙漠是PM2.5的大值区,即包括中国东部和西北地区、印度半岛、阿拉伯半岛和非洲北部撒哈拉沙漠是PM2.5浓度大值区。这一反演结果虽然为我们提供了一个较好的参考,

  • 标签: PM2 5 美国宇航局 撒哈拉沙漠 汽车尾气排放 大气环境
  • 简介:PM2.5喷雾器从2009年4月在城市的Chengdu被取样到2010年1月,并且他们的化学作文为元素详细被描绘,浇可溶的无机的离子,和碳的物质。PM2.5的年度一般水准是165gm3,它通常比另外的中国城市里的大小高,建议城市里的严肃的微粒污染问题。水可溶的离子包括元素的碳和器官的碳贡献了43.5%到年度全部的PM2.5集体、碳的喷雾器贡献了32.0%,并且踪迹元素贡献了13.8%。不同每日、季节的变化在PM2.5和它的部件的集体集中被观察,反映不同人为、生来的来源的季节的变化。对中立粒子弱酸被作出对有利的裁决PM2.5。从来源分配分析识别的PM2.5的主要来源包括了煤燃烧,交通用尽,燃烧的生物资源,土壤灰尘,和构造清扫排出物。低硝酸盐:硫酸盐比率建议静止排出物比车辆排出物更重要。铵硫酸盐的重建的群众,铵硝酸盐,微粒碳的物质,和好土壤说明了79%全部的测量PM2.5质量;他们也说明了散布的92%全部的测量粒子。

  • 标签: 中国西南地区 化学成分 PM2 5 城市 成都
  • 简介:对2004—2011年的PM10浓度资料进行统计分析发现:呼和浩特市PM10污染最严重的是冬季,主要是由于燃煤采暖造成污染源增加以及大气扩散能力较弱;其次是春季,主要是由大风引发的沙尘天气所造成的。

  • 标签: 空气质量 PM10 污染特征
  • 简介:文章针对大同市2006—2009年、榆社县2006—2008年PM10质量浓度数据,使用趋势分析、后向轨迹模拟不同高度的PM10的传输路径,可以看出:PM10浓度的日变化特征为"两高三低";PM10浓度日际变化不明显,只在典型日PM10浓度值明显增大;PM10浓度月变化特征为1、5、12月浓度高,春季5月份由于为沙尘期浓度高。PM10浓度季节变化规律与采暖期和非采暖期变化相符合,即采暖期的冬春季浓度高、非采暖期的夏秋季浓度低;从2006—2009年间,两站PM10质量浓度基本呈逐年下降趋势。不同气象要素与PM10浓度的相关性,按相关系数绝对值从大到小排列依次为:露点温度、气温、降水量、相对湿度。其中露点温度和PM10浓度呈显著负相关性,气温与PM10浓度呈较弱负相关性。

  • 标签: PM10气溶胶 污染特征 分析
  • 简介:利用CART方法对造成北京PM10重污染的气象条件分析结果表明:适当的湿度条件和前期的污染状况是造成北京PM10重污染的必要条件,其他条件,如大气稳定度、边界层高度、持续性小风以及气压,是造成PM10重污染的重要条件。特别值得指出的是,湿度作为必要条件的出现,可能蕴涵着重要的物理化学过程,对其开展深入研究将对北京大气污染的控制和预报有所裨益。

  • 标签: 空气污染预报 PM10重污染 气象条件 北京
  • 简介:为研究华北平原区域背景气溶胶成分及其变化特征,2010年6月至2011年7月在泰山顶采集了64个PM10滤膜样品,分析了样品的PM10及其中无机盐离子和有机碳(OC)、元素碳(EC)的质量浓度,并对各成分相关性等进行了分析.泰山PM10年均质量浓度约为68.4μg/m3,其中无机盐离子约占总质量的64.8%,碳气溶胶约占17.4%.无机盐离子的质量浓度从春季逐渐增大,夏季达到峰值,秋季下降,冬季最小;OC质量浓度从春季至秋季逐渐增高,冬季最低,EC变化类似,但夏秋两季差别不大.二次有机碳(SOC)与OC的比值四季均在50%以上,年均值约为58.5%.通过后向轨迹聚类分析发现,在经过城市的较短轨迹以及南方较短混合轨迹的影响下,泰山PM10质量浓度较高,而西北长距离传输气团PM10浓度均较低.

  • 标签: PM10 水溶性无机盐离子 有机碳 元素碳 泰山
  • 简介:“粒径××,粒子数××,粒普××,PM2.5浓度××”,通过电子触摸屏,工作人员每隔3S就能采集一次空气中可吸入颗粒物(PM2.5和PM10)的浓度和粒径分布。3月29日我国首台可实时检测可吸入颗粒物浓度及粒径分布的仪器(LD310和LD320)在京通过了专家鉴定。

  • 标签: PM2.5 颗粒物浓度 监测仪器 实时检测 采集 3S
  • 简介:乌海市PM10浓度与风速的关系明显。总体而言,PM10污染物浓度随风速的增大而增大;冬季当风速在3.1~4.0m.s-1时,PM10污染物浓度低。PM10浓度与地面风向的关系:春季偏西风时PM10污染浓度最高,偏北风时污染浓度最低;冬季东南风时污染浓度最高,西北风时污染浓度最低。PM10浓度与空气湿度的关系:冬季PM10污染浓度值随湿度的增加而增加,正相关比较明显。春季当空气湿度越小,出现重度污染的频率越高。

  • 标签: PM10污染浓度 气象条件 相关性
  • 简介:采集2012年春季和秋季成都城区的PM2.5(空气动力学当量直径小于等于2.5μm的颗粒物,即细颗粒物)样品,分析得到水溶性离子、有机碳(OC)和元素碳(EC)等化学成分。结果表明,春季和秋季PM2.5的浓度分别为101±64μgm^(-3)和88±30μgm^(-3),是环境空气质量标准(GB3095-2012)日均值的1.3倍和1.2倍。基于K^+、OC/EC(OC浓度/EC浓度)和K^+/EC(K^+浓度/EC浓度)指标判别生物质燃烧事件,结果发现春、秋季生物质燃烧期间PM2.5中OC、EC和K^+、Cl^-等成分明显高于非生物质燃烧期;SO_4^(2-)、NH_4^+、Ca^(2+)、Mg^(2+)、NO_3^-、Na^+等其它水溶性离子浓度在生物质燃烧期均有不同程度升高。春、秋季生物质燃烧期间OC浓度分别是非生物质燃烧期的4.2倍和1.8倍,EC为非生物质燃烧期的2.3倍和2.3倍。K^+和Cl^-浓度在春季生物质燃烧期超过平均值的3倍,在秋季生物质燃烧期超过平均浓度的0.8倍和0.9倍。

  • 标签: 秸秆燃烧季节 PM2.5 水溶性离子 碳组分
  • 简介:近年来,以细颗粒物(PM2.5)为主要污染物的北京地区大气污染已成为人们高度关注的环境问题。本文利用2013年北京市密云地区上甸子国家气象观测站和区域大气本底污染监测站PM2.5监测数据和气象要素数据,分析了北京地区PM2.5浓度与气象条件之间的关系。结果表明:北京地区气象因素对PM2.5污染具有显著影响,其中降水、日照时数对PM2.5浓度有显著的正相关关系,随着降水和日照时数增加,PM2.5日平均浓度和日最高浓度均呈显著下降;相对湿度对PM2.5浓度有显著的负相关关系,随着相对湿度增加,PM2.5浓度显著上升;最大风速与PM2.5浓度呈倒U型关系,较低的风速将导致PM2.5污染增加,但风速达到一定级别时,可有效促进污染扩散,降低PM2.5浓度。北京地区夏季PM2.5污染水平显著低于其他季节。

  • 标签: PM2.5 气象要素 相关
  • 简介:为了了解PM_(2.5)的污染与地面气象因子的相关性,通过对招远市PM_(2.5)的月均浓度与降水量、湿度、风速和气压等气象因子关系分析,结果表明:(1)PM_(2.5)浓度存在明显的季节变化,冬季与气象因子相关性最好,夏季最差。(2PM_(2.5)浓度与相对湿度、平均风速和降水有很强的负相关性。(3)PM_(2.5)浓度与本站气压呈现正相关性。

  • 标签: 招远 PM2.5 气象因子 相关性
  • 简介:PM10是大气颗粒物中对环境和人体健康危害最大的一类,与医院就诊率、呼吸器官疾病发病率乃至死亡率等关系密切。PM10污染与气象条件关系密切,研究气象条件对PM10污染的影响,对改善城市空气质量条件有重要意义。利用2004—2007年三明市的主要大气污染物PM10的监测值及气象因子(气压、风速、温度、湿度、降水、蒸发量)的观测资料,以及同期08时850hPa天气图资料,定量分析了PM10的突变特征以及突变与气象因子的相关关系,结果表明:PM10突变事件有明显的季节性特征,冬、春季节发生突变的概率较大;当地面气象要素场出现气压下降、风速减小、相对湿度下降、降水量减小而温度上升、蒸发量加大的配置时PM10易发生正突变,当出现气压上升、风速加大、相对湿度上升、降水量增加而温度下降、蒸发量减小的配置时PM10易发生负突变;当受大陆高压后部、暖区辐合系统影响时,PM10发生正突变的概率较高,受大陆高压前部、切变线系统影响时,PM10发生负突变的概率较高。

  • 标签: PM10 浓度突变 影响因子
  • 简介:利用北京空气质量监测资料和NCEP再分析资料,分析了北京发生PM10重污染的天气形势。研究表明:1)虽然北京地区PM10重污染(API指数3级以上)每年只有10d左右,但与之关联的轻微或轻度空气污染(API指数3级)天数,却可能占全年3级污染总天数的40%~50%。因此,分析研究造成北京PM10重污染的天气形势,对于空气污染的预警预报以及污染源的控制和管理,都具有十分重要意义。2)通过海平面气压场的主观分析,确定了二类北京PM10重污染的典型天气形势,即高压南下东移阻滞型和与北上台风(或热带低压)相关联的弱高压控制型,并指出了后者在2008年奥运会期间,对开展北京空气污染预报和污染控制的指导作用。

  • 标签: PM10重污染 天气形势 北京
  • 简介:利用北京、上海、兰州、香港和南京5个城市街道灰尘与大气细颗粒物(PM2.5)中各元素的含量,比较分析不同城市街道灰尘与PM2.5的元素组成特征,并利用对数浓度图和分歧系数法探究两者元素组成的差异及其与人为源元素的相关性。结果表明:5个城市街道灰尘和PM2.5中,元素Fe、Al、Ca、K、Na占绝大部分(街道灰尘约占97.48%,PM2.5约占90.11%),元素Ti、Mn、Zn、Pb、Cu、Cr和Ni仅占较小的比例(街道灰尘约占2.51%,PM2.5约占9.60%),元素As和Cd含量则更少(街道灰尘约占0.01%,PM2.5约占0.29%)。5个城市街道灰尘与PM2.5元素组成的分歧系数为0.627—0.801之间,平均值为0.711,处于较高水平,即城市街道灰尘与PM2.5的元素组成存在较大差异。人为源元素(Zn、Pb、Cu、Ni、As、Cd、Mn、K、Cr)在PM2.5中的富集程度高于街道灰尘,城市街道灰尘和PM2.5中人为源元素含量的相关性也较大(r=0.783,P〈0.01)。Al、Ti、Ca、Fe等典型的地壳元素中,仅Ti元素在街道灰尘中富集,Al、Ca和Fe元素有时富集在街道灰尘中,有时富集在PM2.5中,其含量也未呈明显相关。此外,内陆城市的Na元素在街道灰尘中富集,沿海城市的Na元素则多在PM2.5中富集。

  • 标签: 街道灰尘 PM2.5 元素组成 浓度图 分歧系数
  • 简介:利用2015年11月至2016年10月辽宁14市环境空气质量监测数据和地面气象站点监测数据,对辽宁省细颗粒物污染时空特征以及气象因子对其影响规律进行了系统的分析,并据此进行聚类分区。结果表明:辽宁城市PM2.5浓度变化的季节性差异明显,呈冬季高、春季次、夏秋低的总体特征;辽宁全境PM2.5浓度的空间分布差异较大,中部平原地区为最高、两翼丘陵较低、东部沿海最低;根据PM2.5浓度与气象因子的散点图及Spearman相关系数,辽宁城市可分为4种类型,即辽东半岛型(I类,包括丹东、大连、盘锦、营口)、辽西山地型(II类,包括葫芦岛、锦州、朝阳、阜新)、辽东山地型(III类,包括本溪、抚顺)、辽中平原型(IV类,包括铁岭、沈阳、辽阳、鞍山),4类城市的PM2.5浓度依次递增,且冬季最为明显;PM2.5浓度与气温、水汽压、相对湿度仅在冬季均呈正相关,但I、II类城市在春季呈正相关,IV类城市在春、夏两季也呈正相关;与风速在冬季均呈负相关;与气压的相关性不明显。

  • 标签: PM2.5浓度 空间聚类 气象因子 相关性
  • 简介:文章利用国家环保部数据中心提供的呼和浩特市逐日环境空气质量指数(AQI)等级值及首要污染物数据,在分析了呼和浩特市2015年冬季日均AQI值及首要污染物特点的基础上,对呼和浩特市2015年冬季出现的一次典型PM_(2.5)重污染过程的天气特点进行了分析后得出,风速较小,日平均气温连续几日稳定少变的静稳天气是导致这次连续8d细颗粒物污染过程的天气特点。

  • 标签: AQI 首要污染物 PM2.5 静稳天气
  • 简介:利用嵌套网格空气质量预报系统(NAQPMS)的模拟结果,对奥运会开幕前后京津冀地区(2008年7月20日~8月24日)PM10(空气动力学当量直径小于等于10μm颗粒物)输送特征进行计算与分析。结果表明,气象条件的改变使得在南、东南和东三个方向输入北京地区的PM10通量在数值与分布上发生了较大幅度改变。开幕式前PM10主要自南部边界输送入北京,占输入总通量的55.8%,东南边界次之,占29.4%;奥运期间,二者贡献分别变为38.1%和47%,且入京总通量小时均值由50t下降为40.2t。垂直方向上,开幕式前输送能力最大的区间位于边界层中下部,奥运期间(8月8日~24日)边界层内输送的垂直分布较为平均。另外,结合2006年同期气象场及排放清单,通过替换的方法对奥运会期间的空气质量状况进行了情景模拟,结果表明:气象场的变化在PM10区域输送中起着决定性的作用,但在空气质量的改善方面,污染源减排的效果更为明显。

  • 标签: 北京 奥运会 可吸入颗粒物 减排 输送通量
  • 简介:采用卫星监测的火点燃烧排放数据,利用区域化学传输模式WRF-Chem模拟分析了2017年5月华北地区细颗粒物(PM2.5)质量浓度分布,通过生物质燃烧排放源(华北区域以秸秆燃烧为主)开关的敏感性试验定量计算了燃烧排放对北京及其周边地区PM2.5质量浓度的影响。卫星监测结果显示,2017年5月华北地区有大量的秸秆焚烧现象,对该地区空气质量造成一定影响的燃烧天数为20d,占全月总日数的65%左右。数值模拟结果表明:该地区秸秆燃烧排放导致PM2.5浓度升高的区域集中在华北平原农作物产区,其分布位置与卫星监测的火点分布吻合。秸秆燃烧导致这些地区PM2.5浓度月平均值上升幅度普遍超过3μg/m3,高值区超过了11μg/m3,上升比例可达10%以上;此外,来自华北平原及长三角地区的燃烧排放对北京(特别是东南部地区)污染物浓度的影响是不容忽视的,其中河南、山东、天津等地的秸秆燃烧在合适风场的作用下会严重影响北京,可导致丰台及通州等地PM2.5小时浓度上升超过17μg/m3,上升幅度超过40%。

  • 标签: 秸秆燃烧 北京 细颗粒物(PM2.5)数值模拟