学科分类
/ 3
49 个结果
  • 简介:美国科学家首次成功制造出了单原子厚度的锗单锗(germanane),其电子迁移率是硅的10倍,因而有望取代硅用于制造更好的晶体管。研究发表在最新一期的美国化学会《纳米》杂志上。

  • 标签: 原子层 稳定 美国科学家 电子迁移率 美国化学会
  • 简介:通常瓦楞纸箱质量检验项目有:纸板的水份测定、纸板的厚度、耐破强度、戳穿强度、纸板的边压强度、纸板的粘合强度、空箱抗压强度测定。这些为各专业纸箱厂对产品质量必须检测的项目,也是纸箱使用客户通常要求纸箱供应商必须出具检验报告中所应具备的项目。故对于一定规模的瓦楞纸箱的生产厂家均具备上述所必须的检测仪器。

  • 标签: 瓦楞纸箱 检测仪器 防滑性 磨擦 印刷 检验项目
  • 简介:纳米技术在医学领域的应用是近年来的研究热点.尤其是将纳米粒子作为一种药物传递工具备受关注。但英国科学家的最新研究显示,仿生纳米粒子在进入人体细胞后,其袁附着的蛋白会被组织蛋白酶L降解。相关研究成果发表在9月22日《ACS纳米》期刊上。

  • 标签: 组织蛋白酶 纳米粒子 纳米医学 降解 白层 英国科学家
  • 简介:用溶胶-凝胶法在Pt(111)/Cr/SiO2/Si衬底上制备了(100)取向PT过渡,探讨了制备工艺条件对胛过渡成膜情况的影响,结果表明,快速热处理工艺制备的PT过渡结晶较好,而热解时间过长和退火时间过长都会引起铅的损失,造成TiO杂相的出现,从而对PT过渡的结晶产生不利影响。

  • 标签: PT 过渡层 (100)取向 制备工艺 PZT
  • 简介:美国加州大学洛杉矶分校的研究人员与来自中国和日本的同行通过将金纳米粒子用于有机光电太阳能电池,助其增强了光吸收的能力,极大地提高了电池的光电转化率。在新近出版的美国化学学会《纳米》杂志上,加州大学洛杉矶分校亨利萨缪里工程和应用科学学院材料学和工程教捧杨。阳(音译)领导的研究小组发表文章,

  • 标签: 太阳能电池 金纳米粒子 纳米层 转换效率 美国加州大学 光电转化率
  • 简介:以SJGM-1500×5五共挤医用输液膜吹塑机组为例,全面介绍了机组的主、辅机及系统的设计理念,并对主、辅机各装置的性能以及目前国内外的水平进行了评述。

  • 标签: 医用输液膜 五层共挤 吹塑机组
  • 简介:通过磁控溅射技术和1100℃的高温后退火处理,在富硅碳化硅薄膜中形成高密度小尺寸的硅量子点,硅量子点的结构由X射线光电子能谱和高分辨透射电镜进行表征,结果表明,在高温退火过程中,碳化硅薄膜发生了相分离,硅和碳的化学结合态在热力学的驱动下形成稳定的Si-Si键和Si-C键,同时,氮原子钝化了分解过程中形成的Si悬挂键,在硅量子点的表面形成SixN/SiyC非晶壳。这种非晶壳包覆量子点的结构配置非常有利于形成稳定的超小硅量子点(1-3nm),此结构的量子效应所产生的光吸收了从绿光到紫外光的光谱范围,大幅度提高光伏太阳能电池的光电转换效率。

  • 标签: 硅量子点 碳化硅薄膜 X射线光电子能谱
  • 简介:介绍了CMOS技术发展到亚100nm所面临的挑战。针对尺寸量子化效应。建立了NMOSFET的反型电子量子化模型,分析了反型量子化效应对NMOSFET器件参数包括有效栅氧厚度、阈值电压等的影响。得出结论,反型量子化效应致使反型电子分布偏离表面。造成有效栅氧厚度的增加,阈值电压的波动达到约10%。

  • 标签: 亚100nm CMOS 沟道反型层量子化 栅氧厚度 阈值电压
  • 简介:借助于Eshelby等效包容理论及粘弹性基础假设,对随机短纤维增强复合材料与刚性平面的滚动接触问题进行了理论研究,分析了短纤维长径比和体积分数对滚动接触特性的影响,数值结果表明,滚动接触宽度和滚动摩擦系数均随纤维长径比和体积分数的增大而减小;等效接触应力分布不对称,最大等效接触应力随着纤维长径比和体积分数的增大而增大;在任意纤维体积分数和长径比下,滚动摩擦系数受转速影响较大,而滚动接触宽度更取决于载荷。

  • 标签: 随机短纤维 复合材料 滚动接触 纤维体积分数 纤维长径比
  • 简介:碳纳米管(CNTs)由于已被证实且有突出的力学性能,而成为具有潜力的复合材料增韧体。CNTs与聚合物间韵强界面粘接度也已由理论模拟和实验所证实。高粘接强度有利于强化CNTs对聚合物的作用,同时。聚合物也可用作粘接剂提高CNT微结构的力学性能。近日。清华大学以催化化学蒸汽沉积(CCVD)法合成了长线型双壁碳纳米管(DWNT)束。

  • 标签: 双壁碳纳米管 拉伸性能 环氧树脂 插层 CNTS 化学蒸汽沉积
  • 简介:立体绿化作为一种新形式的造景方法,人们对它的定义很长一段时间停留在仅仅是应用藤本植物进行景观的营造,然而藤本植物品种较少,能够在北方应用并长势良好的品种就更为稀少,因此,为了很好的解决这一问题,提高北方城市的绿化率,改善环境质量,本文提出乔灌草三立体绿化的概念,为北方城市园林景观的营造寻求新的解决方法。

  • 标签: 立体绿化 城市景观
  • 简介:利用药芯焊丝对已磨损的K360耐磨钢进行CO2气体保护堆焊修复,并采用不同硬度的23MnNiMoCr54强钢与堆焊配副进行对磨试验。结果表明,当对磨材料硬度大于堆焊硬度大约HRC3时,两种材料配对形成的摩擦副摩擦系数较小,磨损量较小,磨损面较平整。堆焊

  • 标签: 堆焊摩擦 摩擦行为 材料硬度
  • 简介:报导了CdS/ZnS纳米晶体(NCs)的制备过程和其光学}生质。通过采用连续离子吸附和反应技术(SILAR),我们用少量的表面活性剂合成了不同壳的四个样品,包括CdS核纳米晶以及具有1~3ZnS壳的CdS/ZnS核/壳结构纳米晶体样品。发现具有一ZnS壳的CdS/ZnS样品的荧光量子产率大约比未包覆壳的CdS纳米晶体样品的强11倍。另外,随着壳的增加(增至两到三),荧光量子产率呈现下降的趋势。对样品进行了温度相关的光谱测量,发现CdS/ZnS和CdS一样具有特殊的光学特性。

  • 标签: 纳米晶体 CDS/ZNS 荧光 寿命
  • 简介:导电高分子材料一般具有半导体或导体的特征,在某些方面可以取代传统的金属或金属氧化物。采用导电高分子材料对传统的阳极或阴极改性可以大大改善电容器、电池等能装置的最大能容量。从导电高分子材料的合成开始,介绍了纳米结构导电高分子的可控合成、导电高分子的聚合机理和导电机理以及导电高分子材料在能装置包括超级电容器、锂离子电池和燃料电池中的应用。

  • 标签: 导电高分子 纳米结构 超级电容器 锂离子电池
  • 简介:采用水热法设计构筑三维花状二硫化钼,并利用XRD、SEM、RAMAN、TG等测试方法对产物的结构和形貌进行了表征,进而作为正极材料组装成锌离子电池并对其进行电化学测试分析,在充放电电压区间为0.2-1.2V、电流密度为1.0A/g条件下,首次放电比容量可达63.9mAh/g,100次循环后其放电比容量保持在53.6mAh/g,容量保持率为83.9%。较高的比容量和循环稳定性使MoS2成为有前景的锌离子电池正极材料之一。

  • 标签: 三维花状 MOS2 锌离子电池 正极材料 储能机制
  • 简介:1、关于高阻隔包装材料通常将气体透过量在10cm^3/m^2.24h.atm.50%RH以下的称为高阻隔塑料,目前已经实现工业化生产的高阻隔塑料材料有EVOH、PVDC和PAN三种,投入大规模应用的高阻隔塑料有EVOH、PVDC,尼龙由于其透过性远远高于PVDC和EVOH,因此只能作为中阻隔材料(见表一)。高阻隔包装材料能够防止氧气的侵入使产品氧化变质;防止水或水蒸汽的渗透使商品受潮霉变;防止香气、二氧化碳和异味的透过使商品变味和变质,有效提供保质、保鲜、保风味以及延长产品货架期的保证,在包装工业特别是食品包装工业方面获得了迅速发展和广泛的应用。

  • 标签: PVDC 高温蒸煮袋 共挤流延 层压复合 高阻隔包装材料 食品包装工业
  • 简介:采用机械球磨技术制备了MgH2-10%Al2O3(质量分数)氢复合体系,通过XRD、SEM、DSC-TG等检测手段考查了微量Al2O3陶瓷颗粒掺杂对MgH2体系组织结构及解氢性能的影响,并对其相关机理进行了分析.结果表明:机械球磨可有效细化MgH2颗粒;在微量Al2O3陶瓷颗粒与机械球磨的协同作用下,MgH2颗粒的细化效果更为显著;相对于纯MgH2球磨体系而言,微量Al2O3的掺杂有效降低了MgH2体系的解氢温度(降低近50℃),且其解氢速率也有所提高;MgH2-Al2O3氢复合体系解氢性能的改善主要源于Al2O3陶瓷颗粒对MgH2体系的组织细化效应.

  • 标签: MgH2 陶瓷颗粒 球磨 解氢性能
  • 简介:FFS袋用吹塑薄膜是国内近年来刚刚发展起来的一种重包装膜产品:主要用于大型聚乙烯、聚丙烯等合成树脂等化工原料及建筑材料的自动包装线。由于在包装过程中.实现了多道工序和作业过程的连续自动一次完成,使包装速度大大提高,满足超大型合成树脂装置高速包装的需要。FFS袋的包装能力:1700—1900袋/h;复合编织袋包装能力:〈1400袋/h,单线年最大包装量在1150万条,

  • 标签: 包装膜 三层共挤 生产线 自动包装线 合成树脂 吹塑薄膜