尼可地尔的临床应用及研究进展

/ 8

尼可地尔的临床应用及研究进展

孙立平1  ,苗柳,2 ,王勇3

柳州市人民医院,广西柳州市,545006

或不稳定性心绞痛和冠状动脉成形术或溶栓后再灌注损伤。尼可地尔能通过开放三磷酸腺苷敏感钾(K+ ATP)通道和增加内皮一氧化氮(NO),在多种疾病中发挥了不同的保护作用。这些机制的关键取决于尼可地尔使用的剂量、病变部位以及该机制是否能在该部位发挥作用。研究证实,尼可地尔对心肌纤维化、肺纤维化、肾损伤和肾小球肾炎具有保护作用,主要机制为是K+ATP通道开放,而在肝纤维化和炎症性肠病的保护机制中,内皮系统NO的增加占主导地位。因此,探讨在不同的疾病下,明确不同机制在尼可地尔的保护作用中起主要作用有助于正确使用所选药物及其针对特定疾病的选用推荐剂量。

关键词:尼可地尔;内皮一氧化氮;钾通道开放

引言

尼可地尔是一种安全、有效的抗心绞痛药物,在日本和欧洲已被列入指南,作为慢性稳定型心绞痛的长期治疗药物[1]。在多个国家使用尼可地尔治疗冠心病(CAD)心绞痛研究中显示,它能降低冠心病的发病率及死亡率[23]。有赖于上述研究结果的发现,尼可地尔被欧洲心脏病学会推荐为治疗慢性稳定型心绞痛的二线疗法之一,与β受体阻滞剂和钙拮抗剂相比,尼可地尔在改善劳力型心绞痛和缺血性症状方面的疗效相当,且血流动力学障碍最小[5]。此外,尼可地尔与钙拮抗剂或β受体阻滞剂相比,尼可地尔在有使用β受体阻滞剂禁忌症的患者中是一种有效的抗缺血药物[7]。根据其药代动力学特征,尼可地尔对正在使用抗凝治疗的患者,以及存在肝损伤、肾功能下降以及肺疾病是安全的[8]。此外,它的副作用很小,除了常见的副作用如头晕、胃肠不适、面色潮红外,头痛也是常见的副作用,但尼可地尔禁用于低血压或与其他血管扩张剂同时使用。

尼可地尔已被广泛用于各种心血管疾病,诸如变异性心绞痛(冠状动脉痉挛)、不稳定心绞痛和冠状动脉成形术或溶栓后引起的再灌注损伤[6,10]。由于其在临床研究中已被证明是治疗难治性心绞痛的有效药物,使用该药后可大大减少了心绞痛发作的频率或持续时间[11]。除此以外,共有17项临床试验的荟萃分析表明,经皮冠脉介入术(PCI)围术期联合使用尼可地尔可有效改善急性心肌梗死(AMI)患者的左室射血分数和心肌微血管功能[12]。从远期效果来看,在PCI术后,尼可地尔能抑制心室重构以及抑制心肌交感神经兴奋,从而保护左心功能[13]。此外,因其能减少心肌损伤,改善微血管功能和预防介入术中无复流的发生,在急性冠脉综合征(ACS)的早期使用,会有更好的临床预后[14]。另一项研究显示,静脉注射尼可地尔可降低PCI术后患者的心肌动作电位的QT离散度和预防心室颤动的发生[15]。然而,尼可地尔在冠状动脉搭桥术前应用可引起严重的血管舒张和血压下降,这可能与术中多种内环境因素紊乱有关。这就需要至少在手术前3天停止尼可地尔治疗。

1 尼可地尔的药理作用

    尼可地尔是三磷酸腺苷敏感性钾通道开放剂和内皮一氧化氮供体。有人提出了其心脏保护作用的几种机制,包括改善心肌血液灌注;减少前后负荷;保护缺血再灌注损伤;抗心律失常作用;防止钙超载;能量调节作用;以及抗炎、防止心肌凋亡,同时,尼可地尔在改善心功能的同时并不影响血压和心脏传导或收缩。尼可地尔通过扩张冠状动脉和减少心肌耗氧量来产生抗心肌缺血作用,主要通过影响后负荷和较小程度的前负荷来实现。它也被认为是一种平衡的血管扩张剂,能同时影响动脉和静脉,它对前负荷的影响可能小于硝酸盐,因为全身血管阻力的显著降低有利于增加静脉回流。

1.1 一氧化氮募集

    尼可地尔通过其硝基与巯基的反应增加血管平滑肌细胞中NO的含量。相反,这一活动可以激活鸟苷酸环化酶,活着促进NO的释放,导致cGMP水平升高,细胞内钙减少和血管平滑肌细胞松弛减弱。

1.2 K+ATP通道开放

作为K+ATP通道的开放剂,该通道对反映细胞和能量状态的三磷酸腺苷/二磷酸腺苷比值相对敏感。根据钾通道的类型及其组织特异性,这些通道的开放表现出不同的作用。除血管平滑肌细胞外,在心肌细胞的肌膜和线粒体水平上也发现了这种通道[17,19,20]。目前知道的尼可地尔能激活受体Kir6.2/磺酰脲受体2A(SUR2A)和Kir6.2/SUR2B,这证实了其对心肌和平滑肌K+ATP通道具有调控特异性。此外,尼可地尔对胰岛素分泌没有明显的影响,表明它在糖尿病患者中具有良好的耐受性[21]

心肌细胞的肌膜K+ATP通道提供了一种将电活动与代谢和能量状态联系起来的纽带。具体地说,这种类型的通道调节能动作电位在缺血状态下的持续时间,其开放导致动作电位持续时间缩短缩短。

另一方面,当血管平滑肌中的肌膜K+ATP通道打开时,会产生超极化,随后电压敏感型钙通道关闭,钙内流和细胞内钙含量减少,导致肌球蛋白轻链去磷酸化以及血管平滑肌松弛[23],这种类型的肌膜K

+ATP通道也参与了肠系膜和冠状动脉的基础血管张力维持[24],因此,尼可地尔的NO募集和K+ATP通道开放有助于血管舒张。另外,K+ATP通道的开放在低剂量尼可地尔扩张外周和心内膜下小动脉时比较明显,而其NO供体的特性则表现为在高剂量使用是扩张心外膜冠状动脉和静脉[25,26,27]。与硝酸盐相比,尼可地尔给药不会出现耐药性可能与它是一种K+ATP通道的开放剂,而非硝酸盐活性[17]

1.3 线粒体K+ATP通道开放与心脏保护

     尼可地尔具有心脏保护作用,主要归功于线粒体K+ATP通道的开放。据报道,小剂量尼可地尔是一种选择性的线粒体K+ATP通道开放剂[28]。其在线粒体上的确切机制仍存在争议,有人提出了一些假设,目前公认的假说包括通过线粒体K+ATP通道开放增加线粒体基质中钾的摄取,这可能通过线粒体膜的去极化和钙离子通过其通道进入的电化学梯度的降低来防止线粒体钙的积累[30],钙超载的预防通过抑制线粒体通透性转换孔和/或心肌细胞过度收缩来保护心脏[31]。线粒体K+ATP通道开放也可能触发低水平活性氧(ROS)的产生,从而放大信号通路,刺激线粒体(锰超氧化物歧化酶;MnSOD)的抗氧化作用,抑制线粒体烟酰胺腺嘌呤二核苷酸磷酸氧化酶,这是心肌细胞产生ROS的主要来源[32]。这种保护性信号途径的激活也保持了氧化磷酸化的能力,除了维持线粒体膜完整性和抑制凋亡信号途径、线粒体超微结构变化和DNA断裂外,还有能量的产生[33]

尼可地尔通过线粒体K+ATP通道开放保护心脏的机制可能与别的机制之间存在一定的相互作用。首先,它释放的NO本身可以激活线粒体K+ATP通道[34]。其次,以蛋白激酶C(PKC)为代表信号分子,通过磷酸化介导NO募集和线粒体K+ATP通道开放保护心脏[35]。因此,尼可地尔保护心脏的作用可能不仅仅与线粒体K+ATP通道开放有关,还可能与NO、K+ATP通道和PKC之间的复杂相互作用有关[36]。此外,尼可地尔还发挥与其K+ATP通道开放无关的抗自由基特性,这可能与其含有部分烟酰胺基团有关,烟酰胺基团是羟自由基清除剂[37]

2 尼可地尔在不同疾病状态下的不同机制

    尼可地尔的保护作用一直存在争议。其保护作用在一定程度上取决于使用尼可地尔的剂量、患病的情况以及该机制是否能在该部位发挥作用,尼可地尔在不同实验模型中的主导作用机制各不相同。

2.1 心血管系统疾病

尼可地尔通过直接激活K+ATP通道对休克状态下麻醉狗的心肌起到了保护作用,其所提供的心脏保护作用可以被格列本脲(K+ATP通道阻滞剂)预处理所阻断。同时,尼可地尔能减轻大鼠心肌梗死后的心肌纤维化,而格列本脲的加入阻断了其对成纤维细胞分化的有益作用[39]。格列本脲既是K+ATP通道的阻滞剂,又是NO生成的血管舒张剂[40],这一研究提示K+ATP通道开放是保护机制的主导效应。

尼可地尔通过一种被称为药物预处理的方式,在缺血再灌注(IR)心肌损伤的各种实验模型中,通过线粒体K+ATP通道的开放提供心脏保护[3641]。尼可地尔的药物预处理可通过低剂量尼可地尔(3-6mg/kg/d)选择性打开线粒体K+ATP通道减轻大鼠心肌缺血再灌注损伤,对IR引起的生化变化和室性心律失常有更大的心脏保护作用[42]。心室肌细胞的其他实验亦表明,使用线粒体K+ATP通道选择性阻断剂(5-羟基癸酸盐)可消除尼可地尔的保护作用,这个实验确定了线粒体K+ATP而不是其肌膜对应物作为尼可地尔心脏保护作用靶点的作用[43]。尼可地尔除了能通过改善线粒体氧化应激状态和能量产生,改善了实验性心力衰竭中线粒体及其下游通路的功能障碍此外,同时也对阿霉素诱导的HL-1心肌细胞ROS的保护作用有关[32]

重要的是,尼可地尔的药物预处理与干细胞联合应用,通过建立骨髓间充质干细胞(BM-MSC)的造血微环境,改善骨髓间充质干细胞(BM-MSC)在异丙肾上腺素诱导的心肌损伤后的移植效果,这些效果是通过减少炎症、纤维生成和细胞凋亡等因素来实现的,这些因素可能会干扰细胞治疗的效率

2.2 肺部疾病

尼可地尔曾被报道能减轻野百合碱诱导的大鼠内皮损伤和肺动脉高压,其主要原因是K+ATP通道开放,其NO释放的特性具有一定的辅助作用。通过使用格列本脲和N-ω-硝基-L-精氨酸甲酯(L-NAME)(一氧化氮合酶抑制剂)阻断其作用亦证实了这一点,激活K+ATP通道主要有助于尼可地尔对抗环磷酰胺诱导的大鼠肺纤维化的有益作用,而格列本脲的联合应用完全阻断了尼可地尔的作用。

2.3 肾脏疾病

尼可地尔在几种实验性肾脏疾病模型中被证明具有保护作用。它能明显减轻糖尿病eNOS缺乏小鼠的肾损伤和尿白蛋白排泄,但不包括NO募集的作用。其保护机制被证明与减少血管内皮氧化应激有关,这样的效应可能是通过K+ATP通道的开放来刺激的[47]

。尼可地尔还通过激活K+ATP通道和刺激线粒体中MnSOD的表达来保护肾脏足细胞免受高血糖诱导的氧化应激,尼可地尔通过增加肾脏NO和降低转化生长因子β来减轻单侧输尿管梗阻对大鼠肾脏的损伤,而这些肾保护作用被L-NAME共管理减弱。

2.4 肝脏疾病

在实验中,尼可地尔已被证明是一种有效的抗胆管结扎诱导肝纤维化的治疗方法,其对生化和组织学改变的保护作用被联合应用L-NAME完全逆转,与尼可地尔单独给药相比,格列本脲联合给药显示出较少的保护作用。这些数据表明,尼可地尔对肝纤维化的保护作用主要与其作为NO供体的作用有关,其机制可能与K+ATP通道的开放程度较小有关。

2.5 肠道疾病

尼可地尔能减少实验性炎症性肠病(IBD)治疗药物的剂量,并且对血压无明显影响,其机制仍与K+ATP通道密切相关。它也可以通过抑制炎症介质释放,如肿瘤坏死因子α,发挥抗炎作用,主要是通过募集NO,并在较小程度上通过打开K+ATP通道相关[51]

2.6 男女生殖系统疾病

尼可地尔能显著改善不对称二甲基精氨酸诱发的子痫前期动物的生殖功能紊乱。K+ATP通道的激活亦起主导作用,而格列本脲则能显著降低了尼可地尔的作用[52]。此外,尼可地尔也能通过K+ATP通道放松子宫肌肉的能力,可以改善胎盘微循环[53]。此外,尼可地尔在治疗男性阳痿方面也显示出较好的疗效。在体外实验中发现其能放松了阴茎海绵体平滑肌,这种作用也是通过刺激K+ATP通道开放,另一部分在时通过NO的募集作用。另一方面,其对阴茎海绵体深动脉具有舒张作用,这种作用主要通过刺激鸟苷酸环化酶介导[54,55]

结语

     尼可地尔能通过开放三磷酸腺苷敏感钾(K+ ATP)通道和增加内皮一氧化氮(NO),在多种疾病中发挥了不同的保护作用,且副作用较小,这有助临床上多种疾病的防治。这些作用机制的关键主要取决于尼可地尔使用的剂量、病变部位以及该机制是否能在该部位发挥作用,但其具体机制尚目前未完全明确,有待于进一步的研究证实,以期更有效地指导临床。

参考文献

  1. Roland E. Safety profile of an anti-anginal agent with potassium channel opening activity: An overview. Eur Heart J. 1993;14(Suppl B):48–52.
  2. 2. Walker A, McMurray J, Stewart S, Berger W, McMahon AD, Dargie H, et al. Economic evaluation of the impact of nicorandil in angina (IONA) trial. Heart. 2006;92:619–24.
  3. Horinaka S, Yabe A, Yagi H, Ishimitsu T, Yamazaki T, Suzuki S, et al. Effects of nicorandil on cardiovascular events in patients with coronary artery disease in the Japanese coronary artery disease (JCAD) study. Circ J. 2010;74:503–9.
  4. Task Force Members. Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, et al. 2013 ESC guidelines on the management of stable coronary artery disease: The task force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013;34:2949–3003.
  5. Ferrari R, Pavasini R, Camici PG, Crea F, Danchin N, Pinto F, et al. Anti-anginal drugs-beliefs and evidence: Systematic review covering 50 years of medical treatment. Eur Heart J. 2019;40:190–4.
  6. Falase B, Easaw J, Youhana A. The role of nicorandil in the treatment of myocardial ischaemia. Expert Opin Pharmacother. 2001;2:845–56.

7. Morishita S, Maeba H, Takehana K, Shiojima I. Nicorandil was an effective treatment option for a patient with bland-white-garland syndrome. Intern Med. 2017;56:2295–9.

8. Frydman A. Pharmacokinetic profile of nicorandil in humans: An overview. J Cardiovasc Pharmacol. 1992;20(Suppl 3):S34–44.

9. Dunn N, Freemantle S, Pearce G, Wilton LV, Mann RD. Safety profile of nicorandil – Prescription-event monitoring (PEM) study. Pharmacoepidemiol Drug Saf. 1999;8:197–205.

10. Krumenacker M, Roland E. Clinical profile of nicorandil: An overview of its hemodynamic properties and therapeutic efficacy. J Cardiovasc Pharmacol. 1992;20(Suppl 3):S93–102.

11. Li Y, Liu Y, Peng W, Wang B, Geng T, Xu Z. Therapeutic effect and safety of nicorandil in treatment of refractory angina pectoris. Int J Clin Exp Med. 2018;11:6993–8.

12. Iwakura K, Ito H, Okamura A, Koyama Y, Date M, Higuchi Y, et al. Nicorandil treatment in patients with acute myocardial infarction: A meta-analysis. Circ J. 2009;73:925–31.

13. Kasama S, Toyama T, Sumino H, Kumakura H, Takayama Y, Ichikawa S, et al. Long-term nicorandil therapy improves cardiac sympathetic nerve activity after reperfusion therapy in patients with first acute myocardial infarction. J Nucl Med. 2007;48:1676–82.

14. Ito H, Taniyama Y, Iwakura K, Nishikawa N, Masuyama T, Kuzuya T, et al. Intravenous nicorandil can preserve microvascular integrity and myocardial viability in patients with reperfused anterior wall myocardial infarction. J Am Coll Cardiol. 1999;33:654–60.

15. Ueda H, Nakayama Y, Tsumura K, Yoshimaru K, Hayashi T, Yoshikawa J. Intravenous nicorandil can reduce the occurrence of ventricular fibrillation and QT dispersion in patients with successful coronary angioplasty in acute myocardial infarction. Can J Cardiol. 2004;20:625–9.

16. Kinoshita M, Sakai K. Pharmacology and therapeutic effects of nicorandil. Cardiovasc Drugs Ther. 1990;4:1075–88.

17. Schmid JP, Schroeder V. Nicorandil-review of pharmacological properties and clinical applications. Heart Drug. 2005;5:220–9.

18. Taira N. Similarity and dissimilarity in the mode and mechanism of action between nicorandil and classical nitrates: An overview. J Cardiovasc Pharmacol. 1987;10(Suppl 8):S1–9.

19. Escande D, Henry P. Potassium channels as pharmacological targets in cardiovascular medicine. Eur Heart J. 1993;14(Suppl B):2–9.

20. Tamargo J, Caballero R, Gómez R, Valenzuela C, Delpón E. Pharmacology of cardiac potassium channels. Cardiovasc Res. 2004;62:9–33.

21. Zhang M, Zhang H, Liu C, Li X, Ling M, Wang Z, et al. Myocardial protective effects of nicorandil on rats with type 2 diabetic cardiomyopathy. Med Sci Monit Basic Res. 2018;24:141–5.

22. Nichols CG, Lederer WJ. Adenosine triphosphate-sensitive potassium channels in the cardiovascular system. Am J Physiol. 1991;261:H1675–86.

23. Kreye VA, Lenz T, Theiss U. The dualistic mode of action of the vasodilator drug, nicorandil, differentiated by glibenclamide in 86Rb flux studies in rabbit isolated vascular smooth muscle. Naunyn Schmiedebergs Arch Pharmacol. 1991;343:70–5.

24. Daut J, Klieber HG, Cyrys S, Noack T. KATP channels and basal coronary vascular tone. Cardiovasc Res. 1994;28:811–7.

25. Holzmann S. Cyclic GMP as possible mediator of coronary arterial relaxation by nicorandil (SG-75) J Cardiovasc Pharmacol. 1983;5:364–70.

26. Lefer DJ, Lefer AM. Studies on the mechanism of the vasodilator action of nicorandil. Life Sci. 1988;42:1907–14.

27. Holzmann S, Kukovetz WR, Braida C, Pöch G. Pharmacological interaction experiments differentiate between glibenclamide-sensitive K+ channels and cyclic GMP as components of vasodilation by nicorandil. Eur J Pharmacol. 1992;215:1–7.

28. Das B, Sarkar C, Karanth KS. Effects of administration of nicorandil or bimakalim prior to and during ischemia or reperfusion on survival rate, ischemia/reperfusion-induced arrhythmias and infarct size in anesthetized rabbits. Naunyn Schmiedebergs Arch Pharmacol. 2001;364:383–96.

29. Holmuhamedov EL, Wang L, Terzic A. ATP-sensitive K+ channel openers prevent Ca2+ overload in rat cardiac mitochondria. J Physiol. 1999;519:347–60.

30. Crestanello JA, Doliba NM, Babsky AM, Doliba NM, Niibori K, Whitman GJ, et al. Ischemic preconditioning improves mitochondrial tolerance to experimental calcium overload. J Surg Res. 2002;103:243–51.

31. Kim JS, Jin Y, Lemasters JJ. Reactive oxygen species, but not Ca2+ overloading, trigger pH- and mitochondrial permeability transition-dependent death of adult rat myocytes after ischemia-reperfusion. Am J Physiol Heart Circ Physiol. 2006;290:H2024–34.

32. Asensio-López MC, Soler F, Pascual-Figal D, Fernández-Belda F, Lax A. Doxorubicin-induced oxidative stress: The protective effect of nicorandil on HL-1 cardiomyocytes. PLoS One. 2017;12:e0172803.

33. Ahmed LA, El-Maraghy SA. Nicorandil ameliorates mitochondrial dysfunction in doxorubicin-induced heart failure in rats: Possible mechanism of cardioprotection. Biochem Pharmacol. 2013;86:1301–10.

34. Sasaki N, Sato T, Ohler A, O'Rourke B, Marbán E. Activation of mitochondrial ATP-dependent potassium channels by nitric oxide. Circulation. 2000;101:439–45.

35. Nakano A, Liu GS, Heusch G, Downey JM, Cohen MV. Exogenous nitric oxide can trigger a preconditioned state through a free radical mechanism, but endogenous nitric oxide is not a trigger of classical ischemic preconditioning. J Mol Cell Cardiol. 2000;32:1159–67.

36. Tsuchida A, Miura T, Tanno M, Sakamoto J, Miki T, Kuno A, et al. Infarct size limitation by nicorandil: Roles of mitochondrial K(ATP) channels, sarcolemmal K(ATP) channels, and protein kinase C. J Am Coll Cardiol. 2002;40:1523–30.

37. Hosseini-Tabatabaei A, Esmaily H, Rahimian R, Khorasani R, Baeeri M, Barazesh-Morgani A, et al. Benefit of nicorandil using an immunologic murine model of experimental colitis. Cent Eur J Biol. 2009;4:74–85.

38. Auchampach JA, Cavero I, Gross GJ. Nicorandil attenuates myocardial dysfunction associated with transient ischemia by opening ATP-dependent potassium channels. J Cardiovasc Pharmacol. 1992;20:765–71.

39. Lee TM, Lin SZ, Chang NC. Nicorandil regulates the macrophage skewing and ameliorates myofibroblasts by inhibition of RhoA/Rho-kinase signalling in infarcted rats. J Cell Mol Med. 2018;22:1056–69.

40. Chan W, Yao X, Ko W, Huang Y. Nitric oxide mediated endothelium-dependent relaxation induced by glibenclamide in rat isolated aorta. Cardiovasc Res. 2000;46:180–7.

41. Mizumura T, Nithipatikom K, Gross GJ. Infarct size-reducing effect of nicorandil is mediated by the KATP channel but not by its nitrate-like properties in dogs. Cardiovasc Res. 1996;32:274–85.

42. Ahmed LA, Salem HA, Attia AS, Agha AM. Pharmacological preconditioning with nicorandil and pioglitazone attenuates myocardial ischemia/reperfusion injury in rats. Eur J Pharmacol. 2011;663:51–8.

43. Sato T, Sasaki N, O'Rourke B, Marbán E. Nicorandil, a potent cardioprotective agent, acts by opening mitochondrial ATP-dependent potassium channels. J Am Coll Cardiol. 2000;35:514–8.

44. Mohamed SS, Ahmed LA, Attia WA, Khattab MM. Nicorandil enhances the efficacy of mesenchymal stem cell therapy in isoproterenol-induced heart failure in rats. Biochem Pharmacol. 2015;98:403–11.

45. Sahara M, Sata M, Morita T, Hirata Y, Nagai R. Nicorandil attenuates monocrotaline-induced vascular endothelial damage and pulmonary arterial hypertension. PLoS One. 2012;7:e33367.

46. Ahmed LA, El-Maraghy SA, Rizk SM. Role of the KATP channel in the protective effect of nicorandil on cyclophosphamide-induced lung and testicular toxicity in rats. Sci Rep. 2015;5:14043.

47. Tanabe K, Lanaspa MA, Kitagawa W, Rivard CJ, Miyazaki M, Klawitter J, et al. Nicorandil as a novel therapy for advanced diabetic nephropathy in the eNOS-deficient mouse. Am J Physiol Renal Physiol. 2012;302:F1151–60.

48. Tamura Y, Tanabe K, Kitagawa W, Uchida S, Schreiner GF, Johnson RJ, et al. Nicorandil, a K(atp) channel opener, alleviates chronic renal injury by targeting podocytes and macrophages. Am J Physiol Renal Physiol. 2012;303:F339–49.

49. Masunaga A, Ito K, Asano T, Tsuda H, Asano T. Nicorandil increases renal nitric oxide (no), decreases trasforming growth factor (TGF)-β, and ameliorates renal injury in unilateral ureteral obstruction (uuo) in rats. J Urol. 2018;199:e115.

50. Mohamed YS, Ahmed LA, Salem HA, Agha AM. Role of nitric oxide and KATP channel in the protective effect mediated by nicorandil in bile duct ligation-induced liver fibrosis in rats. Biochem Pharmacol. 2018;151:135–42.

51. Hosseini-Tabatabaei A, Abdollahi M. Potassium channel openers and improvement of toxic stress: Do they have role in the management of inflammatory bowel disease? Inflamm Allergy Drug Targets. 2008;7:129–35.

52. Stupakova EG, Lazareva GA, Gureev VV. Correction of morphofunctional disturbances arising when modeling preeclampsia with resveratrol and nicorandil. Res Results Pharmacol. 2018;4:59–71.

53. Hong SH, Kyeong KS, Kim CH, Kim YC, Choi W, Yoo RY, et al. Regulation of myometrial contraction by ATP-sensitive potassium (KATP) channel via activation of SUR2B and kir 6.2 in mouse. J Vet Med Sci. 2016;78:1153–9.

54. Hedlund P, Holmquist F, Hedlund H, Andersson KE. Effects of nicorandil on human isolated corpus cavernosum and cavernous artery. J Urol. 1994;151:1107–13.

55. Lee SW, Wang HZ, Christ GJ. Characterization of ATP-sensitive potassium channels in human corporal smooth muscle cells. Int J Impot Res. 1999;11:179–88.