例谈构造函数法在不等式证明中的应用

(整期优先)网络出版时间:2020-11-06
/ 2


例谈构造函数法在不等式证明中的应用

廖培章

广东省梅州市五华县水寨中学 514400

摘要:不等式问题的证明方法灵活多样,技巧性强,综合性较高,除了常见的比较法、分析法、综合法、反证法、几何法、放缩法外,还可以利用构造函数法,通过函数的单调性来证明不等式,从而使证明过程更加简捷。

关键词:例谈构造函数法;不等式证明;应用

引言

现行高中数学教材中,导数已成为研究函数性质的一种重要工具。在新课程背景下,不等式的证明已大幅度降低要求,但是不等式证明中蕴含着丰富的数学思想与数学方法,各类考试特别是高考压轴题位置依然会出现不等式证明问题。只是用纯不等式的方法解决不等式证明已不多见,一般情况都需要利用转化与化归思想,转化为函数,进而通过求导,进一步转化为函数的单调性、极值、最值来解决。在解决这类问题时,往往需要先构造函数,因而,函数的变化与构造成为分析与思考此类问题的难点。

1寻找待证不等式的等价不等式构造函数

找到待证不等式的等价不等式,观察等价不等式的结构,构造函数。

例1(2016年全国高中数学联赛山东省预赛试题第12题)求证不等式5fa4eb9d59303_html_68c93738e06522f8.gif 。证明待证不等式等价于证明不等式5fa4eb9d59303_html_d0137b5508139323.gif 。设函数f(x)=2sinx+tanx−3x(00即可.因为f(0)=0,且5fa4eb9d59303_html_a7a6ff0a9f484b89.gif 设函数g(x)=2cos3x−3cos2x+1,因为g(0)=0,则g′(x)=−6cos2xsinx+6cosxsinx=6sinxcosx(1−cosx)>0,因此,g(x)>g(0)=0,即f′(x)>0,f(x)在区间(0,1]上单调递增,故f(x)>f(0)=0,不等式成立。

例2(2013年中科大数学夏令营试题)已知n∈N,n>2,求证:5fa4eb9d59303_html_519139be24545ec6.gif

解析注意到待证不等式等价于5fa4eb9d59303_html_6d23d665981f1c0e.gif ,于是我们想到可构造函数f(x)=3x−x−1,x∈(0,1),而f′(x)=3xln3−1>0,故f(x)在(0,1)上为增函数,所以f(x)>f(0)=0,即3x>x+1,取5fa4eb9d59303_html_b4d26c63aa9315e5.gif ,n∈N,n>2,即可知待证不等式成立.

评注该问题的证明方法很多,此证法是通过构造函数f(x)=3x−x−1来证明不等式,可以说是很多证法中较为简单的一种证法。

2分离变量,构造函数

例2已知函数f(x)=xlnx,g(x)=−x2+ax−3.对一切的x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围。

解析∀x∈(0,+∞),有2xlnx≥−x2+ax−3,则5fa4eb9d59303_html_2c5e23f0da523948.gif ,设5fa4eb9d59303_html_b4b0893ced59b473.gif ,则5fa4eb9d59303_html_ac7f4640b63e2581.gif ,x∈(0,1)时,h′(x)<0,h(x)单调递减;x∈(1,+∞)时,h′(x)>0,h(x)单调递增.hmin=h(1)=4,因为∀x∈(0,+∞),2f(x)≥g(x)恒成立,所以a≤h(x)min=h(1)=4。

评注对于一些含有参数的恒成立问题,可以把参数分离出来,然后把不等式的另一边构造辅助函数,利用导数工具研究辅助函数的最值,求解问题。

变式练习已知函数5fa4eb9d59303_html_3aa1c5782a88e60.gif ,当x≥1时,不等式5fa4eb9d59303_html_6c3bad9996259e5.gif 恒成立,求实数k的取值范围。

简析5fa4eb9d59303_html_4df4841e9fe78cd4.gif 恒成立等价于5fa4eb9d59303_html_b399fc2aefd3c3d6.gif 恒成立,令5fa4eb9d59303_html_ffb56b08ac6911a1.gif ,则5fa4eb9d59303_html_dfad3b3558d332ae.gif 再令h(x)=x−lnx,则5fa4eb9d59303_html_5e8326bf541b578f.gif 所以h(x)≥h(1)=1,所以g′(x)>0,所以g(x)单调递增函数,所以g(x)≥g(1)=2,故k≤2。

3利用非齐次式消元,构造函数

例3已知函数5fa4eb9d59303_html_790a9b2c89040371.gif ,若f(x)=x3+3x-a有两零点x1、x2(x1<x2),求证:x1+x2>2。

分析 依题意得,5fa4eb9d59303_html_abd3310e779bd898.gif ,于是有5fa4eb9d59303_html_505cd602b958bd79.gif ,式子的左边并不是齐次式,不能像例3、例4那样构造函数,但是依然可以模仿其进行换元,消元后再构造。

解答 设5fa4eb9d59303_html_95cd08a2398c70cb.gif ,则x2=tx1,5fa4eb9d59303_html_5749df519a78bd2b.gif ,则5fa4eb9d59303_html_dd51411d131946b5.gif

于是5fa4eb9d59303_html_34f118c3aba3b43d.gif ,所以5fa4eb9d59303_html_33fdabb8b7f6e275.gif

因t>1,则Int>0,要证x1+x2>2,只需证5fa4eb9d59303_html_e61c61a330a9d350.gif ,令5fa4eb9d59303_html_9f6f29a7672cc5e5.gif5fa4eb9d59303_html_fb8c5d413932af78.gif ,g(t)在(1,+∞)内单调递增,则g(t)>g(1)=0,即5fa4eb9d59303_html_8fd5a5393f96dad4.gif

4先放缩后构造函数

先放缩后构造函数即对待证不等式中较为复杂的某一部分做放缩处理,使其变得较为简单,然后再构造相关的函数进行解题。

例4(2013年高考全国新课标II卷理科第21题)已知函数f(x)=ex−ln(x+m)。

(I)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;

(II)当m62时,证明f(x)>0。

解(I)解略.m=1,f(x)在[−1,0]上单调递减,在[0,+∞)上单调递增.

(II)f(x)的定义域为x>−m,当m62时,0

⇒−ln(x+m)>−ln(x+2)

⇔ex−ln(x+m)>ex−ln(x+2).

设g(x)=ex−ln(x+2),则

5fa4eb9d59303_html_fb178b731db63f9a.gif

因为g′(x)在(−2,+∞)上单调递增,又g′(−1)<0,g′(0)>0,所以g′(x)=0在(−2,+∞)上有唯一实根x0,如图1(函数g′(x)的模拟图象),且x0∈(−1,0).所以当x∈(−2,x0)时,g′(x)<0;当x∈(x0,+∞)时,g′(x)>0.所以g(x)在(−2,x0]上单调递减,在[x0,+∞)上单调递增,如图2(函数g(x)的模拟图象),所以g(x)>g(x0)=ex0−ln(x0+2),又

5fa4eb9d59303_html_93dd6dcd12800fd.gif

所以

5fa4eb9d59303_html_19e9e18414b30bc6.gif

所以g(x)>0,所以ex−ln(x+m)>ex−ln(x+2)>0,综上,当m62时,f(x)>0。

5构造“原函数”

例5(2015高考福建,理10)若定义在R上的函数f(x)满足f(0)=−1,其导函数f′(x)满足f′(x)>k>1,则下列结论中一定错误的是()

A.5fa4eb9d59303_html_c79576e8a7d1886c.gif

B.5fa4eb9d59303_html_74076ae6bd60262a.gif

C.5fa4eb9d59303_html_eb7a9cd36a1561b2.gif

D.5fa4eb9d59303_html_8865f65078b7b07d.gif

证明由已知条件,构造函数g(x)=f(x)−kx,则g′(x)=f′(x)−k>0,故函数g(x)在R上单调递增,且5fa4eb9d59303_html_2339158756e84d85.gif ,故5fa4eb9d59303_html_dc2d1bd2f3bff485.gif ,所以5fa4eb9d59303_html_83dc3e5b63d545e2.gif ,进而5fa4eb9d59303_html_b9d6cad1b56688e8.gif ,所以一定错误的是C,选项D无法判断;构造函数h(x)=f(x)−x,则h′(x)=f′(x)−1>0,所以函数h(x)在R上单调递增,且5fa4eb9d59303_html_c42553bea4b0cee6.gif ,所以5fa4eb9d59303_html_518bca78eeed0890.gif ,即5fa4eb9d59303_html_32438280da81d24.gif ,选项A,B无法判断,故选C。

评注这些类型题目的特点是条件中有f′(x)这样的式子。本题通过条件中f′(x)>k>1,构造出原函数g(x)=f(x)−kx和h(x)=f(x)−x,从而h(x),g(x)单调增,再分析得解.构造函数的思维采取了逆推,利用导数形式构造出原函数。

变式练习设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(−1)=0,当x>0时,xf′(x)−f(x)<0,则使得f(x)>0成立的x的取值范围是()

A.(−∞,−1)∪(0,1)

B.(−1,0)∪(1,+∞)

C.(−∞,−1)∪(−1,0)

D.(0,1)∪(1,+∞)

简析构造函数5fa4eb9d59303_html_338a30e6e81dc5fb.gif ,即可。

结语

在证明不等式时,通常需要根据不等式的特点,进行构造函数,用导数研究函数的性质,从而达到证明不等式的目的,即把证明不等式转化为用导数解决的函数问题。此类问题变化多、思路多、方法多,但是核心问题点在于构造函数,具有一定的创造性和隐蔽性,需要熟悉常见构造策略,具体解决时,需要通过对题目中条件的转化、变量的增减、结构的改造进行多方位的分析与思考。

参考文献

[1]马金仙.两道经典不等式的讲评历程[J].数学通讯(下半月),2016(7).

[2]程爱文.让学生的心灵去旅行———一堂试卷讲评课教学[J].数学通讯(下半月),2011(8).

[3]华东师范大学数学系.数学分析上册[M].北京:高等教育出版社,2005.

[4]黄俊峰,袁方程.利用导数证明不等式中构造函数策略探究[J].中学数学教学,2012(6):37-39.

[5]华东师范大学数学系.数学分析下册[M].北京:高等教育出版社,2005.