海洋桥梁工程施工技术及装备发展研究

(整期优先)网络出版时间:2020-08-22
/ 2

海洋桥梁工程施工技术及装备发展研究

庞明岳 1 周聪明 2

1. 天津博迈科海洋工程有限公司 天津 300457

2.天津汇邦科技发现有限公司 天津 300457

摘要:现如今,我国的市场经济在迅猛发展,社会在不断进步,海洋桥梁已成为各国基础设施重要的组成部分,这条绚丽的蓝色纽带也将带动海洋经济的快速发展。目前,已建成的海洋桥梁结构形式及施工装备还远不能满足桥梁向纵深海域发展的需要,为储备高端关键技术,迫切需要深入海洋桥梁施工技术及装备发展战略研究。在深水基础方面,着重对沉井基础、设置基础及大直径钢桩基础的大型化、装配化及智能化提出研究方向;在海洋桥梁的斜拉桥及悬索桥上部结构方面,就主塔、主梁及索束的结构形式及施工方法重点研究大节段制造运输、自动调整对位安装、结构抗风措施等;在智慧建造方面,提出结合信息化平台及可视化装备进行综合应用性研究。

关键词:海洋桥梁;施工技术;装备;发展

引言

随着全球经济一体化战略的实施,海洋桥梁已成为各国基础设施重要的组成部分,这条绚丽的蓝色纽带也将带动海洋经济的快速发展。目前,已建成的海洋桥梁结构形式及施工装备还远不能满足桥梁向纵深海域发展的需要,为储备高端关键技术,迫切需要深入海洋桥梁施工技术及装备发展战略研究。在深水基础方面,着重对沉井基础、设置基础及大直径钢桩基础的大型化、装配化及智能化提出研究方向;在海洋桥梁的斜拉桥及悬索桥上部结构方面,就主塔、主梁及索束的结构形式及施工方法重点研究大节段制造运输、自动调整对位安装、结构抗风措施等;在智慧建造方面,提出结合信息化平台及可视化装备进行综合应用性研究。

1海洋桥梁工程的技术发展现状

桥梁是交通基础设施的咽喉要道和关键节点,海洋桥梁工程对推动国家海洋强国、交通强国战略、“一带一路”倡议发展以及促进经济社会进步具有举足轻重的作用。在过去20年中,中国的海洋桥梁工程建设取得了巨大的技术进步和成就,建成了多座跨海长桥,谱写了世界建桥史上一个又一个奇迹。目前,我国桥梁工程不断从内陆向近海延伸,东海大桥、杭州湾大桥、港珠澳大桥等跨海大桥相继建成,平潭海峡公铁大桥正在建设中,近海桥梁建造技术取得了举世瞩目的成就。随着国家海洋强国战略与“一带一路”倡议的不断推进,我国正规划研究琼州海峡、渤海湾和中国台湾海峡等跨海通道,“一带一路”沿线国家也在规划建设如巽达(印度尼西亚)、里海(俄罗斯至伊朗)等深水海洋桥梁。

2海洋深水基础建造技术及发展研究

2.1设置基础

海洋桥梁设置基础具有体积重量大、基础面积大、承载力高、刚度大、抗船撞、抗震能力强的优点,特别适用于地质条件复杂的深水环境。芜湖公铁二桥3号主塔为设置钢沉井的圆端形结构,基底尺寸为65m×35m,钢沉井高19.5m。底节钢沉井采用气囊法下河,利用拖轮浮运到墩位。系泊锚碇对底节沉井初步定位,再接高沉井和围堰并注水下沉至设计高程。沉井外侧壁与爆破开挖的基坑壁之间抛填碎石进行堵漏。爆破时采用斜向梅花形布孔的微差起爆技术,以达到块度均匀的效果,前期使用贝型抓斗清渣效率很低,后改用2台重型多瓣式抓斗同时作业,提高了出碴效率。随着海洋桥梁向大跨、深水及重载发展,设置基础平面尺寸可能达到100m×100m的规模,重量可达十几万吨,这样对施工设备的要求将会更高,因此,必须从选择制造加工场地、研发重型装备(起吊、安装、浮运等)和特殊装备(深水地下挖掘、整平等)的技术可行性和可靠性出发,深入研究水下工程无人化施工和智能化装备,经过分析重点研究以下技术。

2.2海洋桥梁工程运营管理阶段的测绘技术

将多模GNSS技术同网络通信技术、计算机技术、传感器融合技术以及当前最前沿的物联网、大数据、云计算等其他信息技术结合,实现海洋桥梁三维变形监测的实时在线监测,可显著提高海洋桥梁运营管理水平和安全预警能力。在GNSS测量不到的关键部位,将GNSS与测量机器人综合应用则可实现全面的桥梁监测。此外,三维激光扫描技术又是作为GNSS自动化变形监测的有力补充,其可利用扫描得到的点云数据,获取成片的监测点信息,获取密度更大的变形监测数据,这是其他监测手段所无法比拟的。大力发展机载、移动式三维激光扫描应用,并与GNSS监测技术、测量机器人监测技术进行综合运用,有利于形成点面结合的海洋桥梁三维变形监测技术体系。

2.3沉井基础

某大桥主塔墩28号、29号墩沉井基础钢沉井高分别为50m和56m,考虑刃脚混凝土灌注和定位加固后结构重达15,000t和17,000t,是目前世界上截面尺寸最大、高度最高的沉井基础。28号、29号主墩水深分别为20m和30m,沉井最大锚泊力分别为6940kN和9600kN,施工采用了大直径钢管桩锚碇新方案。沉井的制造及运输采用“船坞内整体制造、整体出坞浮运”的方法。钢沉井在工厂内分节加工制造,在厂内船坞内(长580m,宽190m,深13.5m)完成沉井整体拼装。钢沉井采取助浮措施浮运出坞,利用拖轮浮运到桥位进行定位。底节沉井着床稳定后现场分步接高混凝土节段。海上桥梁沉井基础尺寸一般比较庞大,如采用整体预制(混凝土沉井),目前的机械设备都不可能直接吊装。如采用先钢沉井后灌注砼的方法,其后续水上混凝土施工方量巨大,动用的大型水上砼船较多,施工周期长,作业风险大;如采用分段施工,接缝的安装设计是工程中要面临的重大技术挑战,且此技术还尚未有较成熟完善的方法,需开展专项课题做进一步研究,因此结合海上施工环境应提前研究以下技术。(1)沉井制造、浮运技术。一般大型沉井在桥位附近制造,以减少远距离浮运的风险。沉井井壁建议采用预制拼装,由大型浮吊分块吊装后现浇湿接缝,目前,需研究船坞的功能及建造技术、井壁预制及连接技术。(2)目前沉井下沉主要以水力吸泥机和空气吸泥机为主,成本较低。目前沉井施工时在减少沉井侧面摩阻力等方面做了诸多有益的尝试,但在沉井主动下沉技术和远程控制等方面,还需投入专门力量进行深入研究。(3)需开展水下挖掘装备、水下智能检测机器人在海洋深水环境中的应用研究。

3海洋桥梁工程全寿命管理维护研究战略发展建议

大力开发适用于海洋桥梁工程管理维护的新技术、新设备、新材料、新工艺等,引领高校、科研院所以及企业等相关机构加强全寿命管理维护技术研究与推广应用,在相关重要科技领域实现技术突破,促进海洋桥梁工程管理维护跨越式发展,包含:①着力发展光纤传感技术在海洋桥梁工程健康监测中的应用,研发适用于海洋环境的特种光纤,建立全方位、多尺度的海洋桥梁工程健康检测技术;②重点发展以北斗导航定位为主、其他卫星导航定位为辅的多模卫星融合定位技术,构建“天–空–地–海”海洋桥梁工程一体化空间信息集成技术;③建立以“海洋桥梁工程大数据中心”为支撑的“物联网”海洋桥梁平台,推动海洋桥梁工程全寿命管理维护自动化、信息化与智能化,实现“智慧海洋桥梁”。

结语

近20年来,我国海洋桥梁建造取得了举世瞩目的伟大成就。但在更加复杂和恶劣的海洋环境下,我国海上桥梁的建造技术和相关装备还将面临更多新挑战,为提高海上桥梁施工效率,保证施工安全和质量,未来海洋桥梁建造将在大直径钢桩、沉井沉箱、设置基础、大节段或整孔钢梁等施工大型化和装配化的方向发展,同时伴随着智能建造将会迎来海洋桥梁工程施工技术发展的新时代。

参考文献

[1]林一宁,陈爱萍.跨海大桥的预制构件法施工[J].世界桥梁,2002(4):12-16.

[2]张昊,王辉,何宁.海洋工程大型起重设备及其关键技术研究[J].海洋工程,2009,27(4):130-139.

[3]左明福.厄勒海峡大桥的设计与施工[J].中国港湾建设,2001(1):5-9.