梁式转换层抗震设计分析

(整期优先)网络出版时间:2016-08-18
/ 2

梁式转换层抗震设计分析

甄晟淇

深圳机械院建筑设计有限公司广东深圳518027

摘要:我国是地质灾害较为严重的国家,高层建筑的抗震能力必须达到“大震不倒,小震可修”的目标。从我国目前的建筑向着大空间、多功能的趋势发展,特别是梁式转换,由于受力简单及施工便捷,应用较为广泛。本文根据工程案例,主要对高层建筑的梁式转换层的抗震设计进行探讨。

关键词:梁式转换层;抗震;结构转换层;设计

一、工程概况

某高层建筑采用框支剪力墙结构,工程1到4层为办公区,5至28层为住宅区,层高3m,地下室作为设备房和车库,层高3.5m,主楼标高90.50m。

二、工程结构设计参数

(1)建筑参数

本工程建筑高度92.5m,属于《高层建筑混凝土结构技术规程》(JGJ3-2002)(以下简称《高规》)规定的A级高度钢筋混凝土结构高层建筑。且高宽比4.5,满足《高规》中规定的高层建筑结构最大高宽比要求。

(2)地震参数(见表1)

(3)风荷载参数

根据《高规》,风荷载取值规定:对于特别重要或对风荷载比较敏感的高层建筑,其基本风压应按100年重现期的风压值采用,一般情况下,房屋高度大于60m的高层建筑可按100年一遇的风压值采用,故本工程采用100年一遇的基本风压0.60KN/m2。

(4)结构抗震等级参数

根据《高规》中表4.8.2规定,本工程框支柱、框架柱、框架梁、剪力墙的抗震等级参数设计见表2。

剪力墙截面高度与厚度之比为5~8的短肢剪力墙提高一级,按一级抗震等级采用。如剪力墙厚度大于300mm,且层高与剪力墙截面高度之比大于4的剪力墙,仍视为一般剪力墙,其抗震等级亦按一般剪力墙的抗震等级采用,连梁抗震等级同与其相连之剪力墙。

三、转换层的结构形式及结构布置

(1)转换层的主要结构形式

目前在工程中应用转换层的主要结构形式有梁墙梁式、厚板、箱形、空腹析架式、斜杆析架式和巨型框架等,据不完全统计,我国高层建筑中,仅带转换层的建筑有几百栋之多。其中梁式转换层的建筑约占75%。梁式转换层设计和施工简单,受力明确,转换梁可沿纵向或横向平行布置当需要纵、横向同时转换时,可采用双向梁的布置,一般广泛应用于底部大空间剪力墙结构体系中。

(2)转换层的结构布置

底部转换层位置越高,转换层上、下刚度突变越大,转换层上、下内力传递途径的突变就越加剧;此外,转换层位置越高,落地剪力墙或简体易出现受弯裂缝,从而使框支柱的内力增大,转换层上部附近的墙体易于破坏。总之,转换层位置越高对抗震越不利。底部带转换层结构,转换层上部的部分竖向构件不能直接连续贯通落地,因此,必须设置安全可靠的转换构件。按现有的工程经验和研究结果,转换构件可采用转换大梁、桁架、空腹桁架、斜撑、箱形结构以及厚板等形式。由于转换厚板在地震区使用经验较少,可在非地震区和6度抗震设计时采用,对于大空间地下室,因周围有约束作用,地震反应小于地面以上的框支结构,故7,8度抗震设计时的地下室可采用厚板转换层。

落地剪力墙和框支柱的布置对于防止转换层下部结构在地震中倒塌将起十分重要的作用。高规规定了几条重要原则:带转换层的筒体结构的内筒应全部上、下贯通落地并按刚度要求增加墙厚;框支剪力墙结构要有足够的剪力墙上、下贯通落地并按刚度比要求增加墙厚;长矩形平面的框支剪力墙结构,抗震设计时,其落地剪力墙的间距比原规程适当加严;比原规程增加了限制落地柱周围的楼板不应错层的规定。这几点的原则是防止转换层下部结构破坏的基本要求,特别是对于抗震设计的结构,要求更加严格。遵守这些原则就可控制刚度突变,减少内力传递的突变程度,缩短转换层上、下结构内力传递途径,保证转换层楼盖有足够的刚度以传递不同抗侧力结构之间的剪力,防止框支柱因楼盖错层发生破坏。

框支剪力墙转换梁上一层墙体内不宜设边门洞、中柱上方不宜设门洞。试验研究和计算分析说明,这些门洞使框支梁的剪力大幅度增加,边门洞小墙肢应力集中,很容易破坏。此外,落地剪力墙和筒体的洞口宜在墙体的中部,以便使落地剪力墙各墙肢受力(剪力、弯矩、轴力)比较均匀。

四、层侧向刚度比计算分析

由于本工程梁式转换层结构上部住宅的剪力墙较多,而建筑底部是大空间,因此,部分剪力墙不能直接落地。并且此工程部分转换层层高较大,若设计中不加以注意,通常容易造成下部抗侧刚度远远小于上部的情况。为保证转换层下部大空间结构有适宜的刚度、强度、延性和抗震能力,应尽量弱化转换层上部主体结构、强化转换层下部主体结构的刚度,使转换层上、下主体结构的刚度及变形特征尽量相近。

目前在高层建筑结构设计规范中,对于带转换层的高层建筑结构,往往通过控制转换层上、下主体结构的抗侧刚度比来避免竖向刚度差异较大。规范对层侧向刚度比计算,主要有3种方法:(1)地震剪力与地震层间位移比;(2)剪切刚度;(3)剪弯刚度。这3种方法由于计算不同,得出的刚度比结果通常有差异,需根据实际工程做出合适选择。

计算方法1地震剪力与地震层间位移比是在《建筑抗震设计规范》(GB50011-2001)条文说明中提供的层刚度比计算方法。

计算方法2剪切刚度是在《高层建筑混凝土结构技术规程》(JGJ3-2002)附录E.0.1中提供的层刚度比计算方法,适用于底部大空间为1层的情况。按下列公式计算:

但是这种刚度比计算方法存在着一定的问题:(1)没有考虑竖向构件的布置问题,布置在中间的剪力墙和布置在外围的剪力墙对层刚度的贡献是不同的,抗侧刚度中弯曲刚度的作用是不可忽略的。(2)特殊结构布置情况下(如与剪力墙相连的框支柱,短肢墙,斜向布置的剪力墙等)剪切面积的取值不明确。

计算方法3剪弯刚度是在《高层建筑混凝土结构技术规程》(JGJ3-2002)附录E.0.2中提供的层刚度比计算方法,适用于底部大空间大于1层的情况。附录E.0.2规定:当底部大空间大于1层时,其转换层上部下部结构的等效侧向刚度比Ye,宜接近1,非抗震设计时不应大于2,抗震设计时不应大于1.3。按以下公式计算:

同时规定当转换层设置在3层及3层以上时,其楼层侧向刚度不应小于上部楼层侧向刚度的60%。以上公式综合考虑了抗剪刚度和抗弯刚度层间侧移量的影响,考虑了竖向构件的布置问题,可适用于梁式转换层和绗架式转换层结构。

总之,当Ye<1时,结构的侧移曲线属于剪切形。此时转换层上部结构抗侧刚度小于下部抗侧刚度,结构布置合理。当Ye≥1时,结构的侧移曲线属于弯曲形。此时转换层上部结构抗侧刚度大于下部抗侧刚度,应控制Ye在合理范围内,并采取有效结构措施,避免因上、下部结构竖向刚度差异大带来抗震不利影响。本工程采用以上3种方法计算,结果见表3。

从计算结果可以看出:采用3种方法计算层刚度比,其结果差别较大。如本工程采用方法2剪切刚度来计算转换层上、下层刚度比,Y>2不能满足《高规》要求,因此在具体实际工程中对转换层结构层侧向刚度比计算须选用正确的计算方法。本工程在地上2层顶转换,底部大空间层数为2层,按《高层建筑混凝土结构技术规程》(JGJ3-2002)附录E.0.2规定,应采用剪弯刚度计算层刚度比。从上述结果可知本工程转换层上下侧向刚度比通过剪弯刚度计算的结果Ye<1.3,满足《规范》要求。

五、结束语

随着我国城市化进程的加快,城市用地愈加紧张,高层、超高层建筑在城市建设中逐渐普及,又由于我国部分城市是地震多发区,因此加强高层建筑的抗震研究显得尤为重要。本文探讨了梁式转换层结构的抗震设计,认为选择合理的梁式转换层结构布置和选用正确的梁式转换层结构层侧向刚度比计算方法是前提。

参考文献:

[1]JGJ3-2012高层建筑混凝土结构技术规程[S]

[2]GB50011-2011建筑抗震设计规范[S]

[3]朱炳寅.对转换结构的认识和把握[J].建筑结构—技术通讯,2008(9):10—13

[4]徐光兴.高层建筑梁式转换层结构的抗震设计的研究[J].福建建材,2013