汽轮机叶片的结构特点与数控加工技术分析

(整期优先)网络出版时间:2018-06-16
/ 2

汽轮机叶片的结构特点与数控加工技术分析

亓磊郭金闯宗鹏飞

(山东齐鲁电机制造有限公司山东省济南市250100)

摘要:随着汽轮机叶片形状越来越复杂,对汽轮机叶片性能的要求越来越高,给汽轮机叶片制造技术带来了更为巨大的挑战。传统的汽轮机叶片加工方式早已无法满足汽轮机叶片的实际技术需求,因此,如何促进汽轮机叶片数控加工技术的发展,进一步提高汽轮机叶片的加工精确度与加工质量已成为汽轮机叶片制造企业所关注的重要问题。

关键词:汽轮机叶片;结构特点;数控加工;技术

1叶片的组成和作用

设计制造动叶片主要考虑如下方面的要求:叶片应具有足够的强度和良好的振动特性,即避开共振区以保证叶片安全运行,应具有良好的空气动力特性,以达到较高的效率;合理的结构和良好的工艺性,便于制造和安装。

叶片的组成:

叶型:叶片的主要工作部分,汽流通过由相邻叶片的型线部分构成的通道,完成能量转换。

叶根:将叶片固定在转子叶轮上的装配部分。

围带、拉筋等:属于链接件,并可调整叶片的自振频率和减少叶片所受的动应力。

动叶的作用:是在高温、高转速、高湿度和高速汽流绕流环境中工作,将高速汽流的动能转变为机械功。

2汽轮机叶片的结构特点

2.1汽轮机叶片的结构

根据叶片功能的不同,汽轮机叶片可分为静叶片和动叶片。静叶片通常与汽轮机静子连接,处于相对不动状态,可以改变气流的方向,促使蒸汽进入下一个叶片。动叶片通常安装在转子叶轮或者转鼓上,受到喷嘴叶栅喷出汽流作用,将蒸汽的能量转换成机械能。不同的汽轮机,叶轮的作用不同,叶片的固定方法也不相同。

动叶片由三部分组成,叶根、叶冠和叶身。叶身通常是扭转的曲面,是叶片的基本组成部分。叶身塑面主要有内塑面、背塑面、出气边圆角等组成。直叶片的塑线从叶根到叶冠不发生变化,属于等截面叶片。叶片通常是比较复杂的曲面,对加工精度要求较高,使用传统的加工方法难以满足要求,是塑面难度大的关键所在。

叶根主要是将叶片固定在叶轮上,保证叶片牢固。叶根可以使叶片在巨大离心力作用下不从轮槽中拔出来。叶根需要有足够的强度,并且能够避免应力集中。

叶冠是叶片外端的固定。叶冠部分通常有围带,可以将多个叶片进行联接。围带可以提高叶片的刚性,避免叶片出现共振,并提高叶片抗振性。围带还可以形成密闭槽道,减少气流的泄露。

2.2汽轮机叶片与叶轮的装配

叶轮通常由轮缘、轮面和轮壳组成。轮壳主要是配合叶轮主轴,一般套装在主轴上,可以提高轮壳的强度。轮缘能够固定叶片,通常根据其受力情况进行叶轮结构设计。轮体位于叶轮中间,可以连接轮缘和轮壳。

3汽轮机叶片CAD/CAM技术工作流程

随着机械制造技术的发展,CAD/CAM技术在机械制造中大量应用。Pro/E、UG等软件技术,改变了传统手工制图模式。利用专业软件,可以快速分析结构受力,缩短叶片设计周期,避免设计中可能出现的常规问题。利用CAD/CAM技术能够方便地进行模拟仿真,对刀具加工路径、刀具补偿参数等进行设置,然后编制程序进行叶片加工。汽轮机叶片进行设计加工时,按照叶身塑面→叶根、叶冠造塑→布尔运算→附加结构设计→完整叶片的顺序进行。建立良好的三维模塑是决定数控加工程序的关键,也对产品质量产生直接影响。

4常用的数控加工程序验证方法

4.1人工检验法

人工检验法的特点是比较方便、灵活。通常检查者阅读加工程序,或借助于坐标纸及其它一些绘图工具检查加工时的刀具轨迹并发现其中的一些错误。由于叶片汽道加工程序繁琐而复杂,人工检验法不仅需耗费很多时间,而且易再次出现错误,因此这种方法已逐渐被淘汰。

4.2试验加工法

试验加工法是一种采用叶片试验件或其它材料(多为非金属材料)零件进行加工的方法。由于试验加工直观而真实地反映了加工过程,因此采用这种方法基本上满足程序验证的需要。

虽然试验加工法是一种验证加工程序的有效方法,但它也存在许多缺点,主要有:加工时间较长;加工精度不高;占用机床并影响周围环境;加工参数无法验证;加工费用巨大。

尽管采用试验加工法验证加工程序具有很多缺点,但由于它能够较为准确地反映整个加工过程,而且我国叶片数控加工整体水平还处于发展阶段,因此这种方法仍被采用。

4.3计算机仿真验证法

随着计算机软件和硬件的迅速发展,用计算机仿真法来验证叶片型面数控加工程序的正确性已被采用。这种方法主要是将加工过程中的叶片模型、刀具轨迹、刀具外形等一起在计算机图形显示器上显示出来,用这种方法来模拟零件的加工过程,检查刀位计算是否正确、加工过程是否发生过切,所选的刀具、走刀路线、进退刀的方式是否合理,刀具与型面是否发生干涉与碰撞等。

5对汽轮机叶片的加工工艺分析

5.1对汽轮机叶片的数控加工工艺

近年来,随着数控加工技术的快速发展,在加工汽轮机叶片时主要采用的是数控机床加工技术,即进行CAD建模后再利用机床实施加工。在汽轮机叶片的加工过程中其最大的难点在于对叶片材料的加工,这是由于叶片的材料硬度较大且极易发生变形。因此,在切削叶片的过程中,如若使用较大的切削力那么就会严重磨损刀片。同时,由于叶片本身结构也十分复杂,要求较高的精确度。所以,在汽轮机叶片数控加工过程中就必须要使用多轴联动数控机床实施加工。在叶片加工前,可事先将其分为四部分,即基准面加工区、汽道塑面加工区、叶根加工区、叶冠加工区,并使用CAD/CAM技术编程,选择适合的塑曲面加工方案,进行仿真模拟试验,从而最大限度地降低在数控加工过程中可能会出现的不必要损失。

5.2对汽轮机叶片的数控加工编程步骤

在汽轮机叶片加工过程中运用计算机专业软件,不仅能有效改变传统的工作方式,还能大大提高汽轮机叶片的加工效率。尤其是CAD/CAM技术在汽轮机叶片制造加工上的应用,更是将零件的几何信息进行了有效转换,使其成为计算机程序,有助于数控机床实施高精度的加工。对汽轮机叶片进行编程时主要包括以下内容:其一,确定叶片的三维造型,选择适合的加工方案,确定刀具、机床、夹具。其二,模拟刀具的运行轨迹,生成刀位源文件。其三,将刀具源文件处理转化为数控机床能够识别的代码。叶片加工时,应始终遵循统一基准,尽可能减少走刀的次数。随着叶片结构的越发复杂多变,叶片叶身塑面的设计难度也越来越大,在设计加工过程中所面临的错误风险也越来越多,主要表现在:其一,加工方案存在不合理性,实际工作效率低下。其二,刀具的相关参数不够合理,加工零件往往会出现残痕。其三,刀具的实际走刀较小,切削效率被大大降低。其四,走刀的痕迹不正确,使加工后的零件尺寸也存在错误。其五,零点不合理导致刀点出现错误。此时,需要进行重新编程,对加工后的零件实施再加工并进行返修,从而严重影响到企业的实际加工进度,大大增加了企业的加工成本。因此,为了能够高效实施数据加工制造,就必须要运用加工软件进行模拟仿真,进一步减少可能出现的故障,提高实际的加工效率。

结语

随着经济社会的发展,汽轮机在生产生活中的应用越来越多,对叶片的加工精度要求也越来越高。叶片加工中,确定科学的加工工艺,减少加工中的变形,可以提高叶片的精度。用数控加工技术进行编程和加工,可以提高叶片加工精度,为汽轮机叶片加工开拓新思路。一些新兴的数控机床技术可以实现一定的连续、平滑页面加工,给数控加工技术带来了新的飞跃。这些新型的机床技术提高了加工的灵活性,减少了劳动强度,提高了叶片加工的性能,是促进汽轮机叶片制造技术发展的重要途径。

参考文献

[1]黄海鸣,郭连水,吴波.基于KBE叶片快速设计方法的研究与实现[J].汽轮机技术,2010(2).106—108.

[2]于红英,唐德威,伞红军.汽轮机叶片参数化设计关键技术研究[J].计算机集成制造系统,2011(10):1537—1542.

[3]史进渊,张兆鹤,严宏强.大型汽轮机研究的某些新进展[J].动力工程,2014(2).