学科分类
/ 5
85 个结果
  • 简介:采用超高重力场燃烧合成工艺,并从500g到2500g每间隔500g依次增大超重力场加速度,制备系列TiC-TiB2凝固陶瓷。经XRD、FESEM和EDS分析,发现陶瓷显微组织均由片晶的TiB2基体相、不规则的TiC第二相及少量的Al2O3夹杂与Cr基金属相组成。增大超重力场加速度,反应熔体内部各组份之间的对流(Stokes)加强,可加快Al2O3液滴的上浮与分离,促进TiC-TiB2-Me液相成分均匀化,使陶瓷显微组织得以细化,且当超重力场加速度超过2000g时,出现TiB2片晶厚度小于1μm的超细晶组织,同时随陶瓷基体上Al2O3夹杂量降低、TiB2片晶异常长大弱化,陶瓷组织均匀性提高。经FESEM断口形貌与裂纹扩展观察,发现TiB2基体相的裂纹桥接与拔出,并耦合晶间Cr基延性相增韧构成陶瓷的复合增韧机制,且随超重力场加速度增大,陶瓷的致密性与组织均质性得以提升,不仅促进TiB2基体相裂纹桥接与拔出,而且可增大Cr基延性对陶瓷增韧的贡献,使得陶瓷弯曲强度与断裂韧性分别同时达到最大值(975±16)MPa和(16.8±1.2)MPa·m^1/2

  • 标签: TiC-TiB2复合陶瓷 超高重力场 燃烧合成 组织均质性 断裂行为
  • 简介:以硝酸铟为原料,用氨水做沉淀剂,采用水解沉淀-水热法制备In2O3的前驱体In(OH)3,用扫描电镜、X射线衍射仪及激光粒度分析仪对产物的结构、形貌和粒度进行表征。结果表明,水解沉淀产物为立方相In(OH)3,呈短棒状团聚体。水热处理过程,产物的晶型、形貌和粒度受Ostwald熟化机制和相转化机制的影响。当水热温度低于280℃时,首先发生Ostwald熟化机制,In(OH)3颗粒形貌由短棒状转变为长方体,而物相不发生变化。当水热温度高于280℃时,除发生Ostwald熟化机制外,还存在相转化机制,产物形貌先由棒状转变为长方体,接着转变为多面体,且物相由立方相的In(OH),转变为斜方相的InOOH。

  • 标签: 氢氧化铟 水热法 物相转化 熟化
  • 简介:利用粉末冶金法制备TiB2和TiC复合材料熔敷棒,并通过电火花沉积在点焊镀锌钢板用电极的表面制备TiB2和TiC复合涂层。利用SEM和XRD分析涂层的微观结构和物相,运用点焊实验测试涂层电极的使用寿命。结果表明:复合材料熔敷棒TiB2和TiC颗粒细小均匀,电火花涂层致密无分层,涂层物相为Cu、TiB2和TiCCu从基体扩散到涂层表面,涂层表面Cu含量(原子分数)达到28%,过渡层出现Cu和Ti的梯度分布,涂层与基体间为牢固的冶金结合复合涂层存在少量裂纹,其显微硬度达到850HV,高于TiB2涂层和TiC涂层硬度点焊时电极头部的平均磨损率大大降低,电极的点焊寿命比无涂层电极提高4倍。

  • 标签: 镀锌钢板 点焊电极 碳化钛 二硼化钛 复合涂层 电火花沉积
  • 简介:采用简单水热法和后续高温煅烧制备多孔结构V2O5微球,用X射线衍射仪分析V2O5微球的晶体结构,通过扫描电镜和透射电镜观察和分析微球表面形貌与微观结构。结果表明,微球为单相V2O5,呈形貌均一的多孔结构。作为锂离子电池正极材料,V2O5多孔微球电极在不同电压区间均显示出优异的电化学性能,在2.5~4.0V电压范围内,100mA/g的电流密度下,初始放电比容量达到145(mA·h)/g,接近理论值147(mA·h)/g,循环50圈后仍保持在138(mA·h)/g,容量保持率高达95.2%。此外,该电极还表现出优异的长循环稳定性,在2A/g的电流密度下循环1000圈后放电比容量保持在82.8(mA·h)/g,平均单圈比容量衰减率仅为0.022%。该材料优良的电化学性能得益于三维多孔微球结构。

  • 标签: 锂离子电池 正极材料 水热法 多孔微球 V2O5 电化学性能
  • 简介:通过热压烧结工艺制得了(SiCp+C)/MoSi2复合材料,测试分析了材料的组织结构、室温和高温力学性能.结果表明:(SiCp+C)/MoSi2复合材料主要由MoSi2(大量),α-SiCp(大量),Mo5Si3(多量)和β-SiC(少量)组成,密度为5.12g/cm3,相对密度为91%;增强相的粒径<30μm,体积分数为39%.其室温硬度、抗弯强度和断裂韧性分别为12.2GPa,530MPa和7.2MPa·m1/2;材料在800℃的维氏硬度为8.0GPa,1200和1400℃的抗压强度分别为560MPa和160MPa.与非增强MoSi2相比,材料的各种力学性能都有大幅度的提高.

  • 标签: 二硅化钼 碳化硅 复合材料 力学性能
  • 简介:采用粉末冶金方法在常压H2气氛下制备W-TiC合金,研究W-TiC合金的烧结致密化行为,并对合金的性能和组织结构进行分析。结果表明:添加微量强化烧结元素可改善W-TiC合金的烧结活性,在1700℃烧结120min后其相对密度达到99.2%;随着烧结温度的升高,W-TiC合金的拉伸强度提高,在2000℃烧结120min后,拉伸强度达到464MPa;TiC颗粒可有效地抑制合金烧结过程的晶粒长大。

  • 标签: W-TiC合金 致密化行为 微观组织 力学性能
  • 简介:以SiO2、碳黑和少量添加剂(CaO,MgO或Al2O3)为原料,在流动氮气于1350~1550℃下,对SiO2碳热还原-氮化产物进行了研究.结果表明,试样S-1,S-2分别在1400℃和1450℃加热4h后,均生成Si2N2O和Si3N4混合物;在1550℃保温4h,这2种试样生成的产物均为SiC.试样S-3在140℃和1450℃加热4h后所得产物为Si3N4和SiC.氧化物添加剂可以促进碳热还原-氮化反应的进行,并保留在生成的粉末体,在随后的粉末热压或无压烧结起烧结助剂的作用.

  • 标签: 二氧化硅 碳热还原-氮化 添加剂 氮化硅
  • 简介:以钼粉及氧化锆粉为原料,采用不同的烧结工艺参数,在常压氩气气氛下烧结制备50%Mo-ZrO2金属陶瓷。采用四电极法测量该金属陶瓷的高温电导率,在1580℃下进行钢液和碱性熔渣侵蚀实验。结果表明:在烧结温度为1600~1650℃,保温时间为2~4h的条件下,随保温时间延长或烧结温度升高,烧结体更加致密,孔隙率下降;因而金属陶瓷的电导率提高,耐钢液和熔渣侵蚀性增强;在1600℃、保温4h条件下烧结的试样密度最大(6.49g/cm^3),高温电导率最高(1600℃下的电导率为101S/cm),耐钢液和熔渣侵蚀能力最强。钢液对金属陶瓷的侵蚀主要为Fe和Mo的相互溶蚀,熔渣对金属陶瓷的侵蚀主要作用于ZrO2陶瓷相,熔渣的Al2O3取代金属陶瓷的ZrO2。熔渣侵蚀过程,CaO与金属陶瓷的ZrO2发生反应生成高熔点CaZrO3相,阻止熔渣对金属陶瓷的进一步侵蚀。

  • 标签: Mo-ZrO2金属陶瓷 钢液 熔渣侵蚀 断口形貌 烧结工艺
  • 简介:介绍了国内外铝电解用NiFe2O4型惰性阳极材料的研究与开发进展情况,指出了该材料具有耐熔盐腐蚀、抗氧化和电阻率低等优点的同时也存在抗热震性能差和电连接困难等缺陷.此外,简要阐述了NiFe2O4型惰性阳极的主要制备工艺.

  • 标签: NIFE2O4 惰性阳极 金属陶瓷 铝电解
  • 简介:采用杂凝聚的方式制备CNTs(CNTs为碳纳米管Carbonnanotubes)分散均匀的3Y-ZrO2/CNTs混合粉体,热压后得到3Y-ZrO2/CNTs复合陶瓷块体材料。与普通球磨混料法制备的陶瓷样品进行对比,研究CNTs含量以及CNTs的分散性对3Y-ZrO2/CNTs复合陶瓷的组织、密度、断裂韧性以及电学性能的影响,并分析CNTs对陶瓷的增韧机理。结果表明,采用杂凝聚处理有助于CNTs在3Y-ZrO2/CNTs复合陶瓷的均匀分散,CNTs含量(质量分数,下同)为1.00%的3Y-ZrO2/CNTs复合陶瓷的断裂韧性达到(18.13±0.50)MPa·m1/2,较球磨混料法制备的样品提高35.10%。陶瓷基体均匀分散的CNTs不仅通过促进马氏体相变起到增韧作用,而且CNTs的桥联和拔出机制也直接起到增韧的作用。CNTs在陶瓷基体均匀分散能大幅降低复合陶瓷的导通阈值。经杂凝聚预处理的CNTs含量为4.00%时,3Y-ZrO2/CNTs复合陶瓷的电导率达到4.467S/m,比不含CNTs的3Y-ZrO2陶瓷高13个数量级;当CNTs含量为1.00%时,复合材料的相对介电常数达到6340,比未经杂凝处理的样品高2个数量级。

  • 标签: 碳纳米管 氧化锆陶瓷 杂凝聚 断裂韧性 电导率 介电常数
  • 简介:采用粉末冶金法制备了2种金属陶瓷,通过X射线衍射和扫描电镜(SEM)分析发现:金属相添加方式(尤其是Al的添加方式)对陶瓷的结构和组成有较大的影响,当Al以单质形式加入时,它会改变原有尖晶石的成分,形成新的尖晶石,同时,还会导致各金属元素的局部分布不均匀现象;合金化后Al的扩散得到了较好的控制,并没有改变原有陶瓷成分.2种金属陶瓷的陶瓷相在高温烧结中都存在不稳定性,出现了离解现象.金属含量不同,金属陶瓷陶瓷相和金属相的烧结机理也不同.

  • 标签: 金属陶瓷 尖晶石 离解 合金化
  • 简介:介绍了新型超导体MgB2的基本超导电性,综述了MgB2材(多晶)、线材和带材的主要制备技术,并对MgB2超导材料的应用前景进行了展望.

  • 标签: MGB2 超导电性 制备技术
  • 简介:采用两步熔盐法于900~1000℃下在C/C复合材料表面制备MoSi2-SiC复合涂层,即在含仲钼酸铵的熔盐制备Mo2C涂层,然后通过熔盐渗硅生成MoSi2-SiC复合涂层。用X射线衍射(XRD)、扫描电镜(SEM)与能谱分析(EDS)等方式研究涂层的组织结构,并测试涂层在1500℃下的抗氧化性能和抗热震性能。同时对涂层氧化后的组织结构进行分析。结果表明:复合涂层主要由MoSi2和SiC两相组成,涂层与C/C基体结合处仅有少量未反应的Mo2C。涂层整体致密,与基体结合良好,均匀地包覆整个基体表面,厚度约为100μm。涂层样品在1500℃的静态空气氧化42h后,涂层表面仍保持完整,质量损失率仅为2.79%。1500℃下经历30次热震实验后,样品的质量损失率为1.96%,涂层具有良好的抗氧化和抗热震性能。

  • 标签: C/C复合材料 熔盐法 MoSi2-SiC 复合涂层 抗氧化性能 抗热震性能
  • 简介:采用等温复合锻造工艺(等温多向锻+等温模锻)制备2A14铝合金轮毂锻坯,然后进行固溶和时效处理。通过金相显微镜、扫描电镜以及力学性能测试,研究等温复合锻造工艺对2A14铝合金轮毂组织与性能的影响。结果表明,在等温复合锻造过程存在动态回复和动态再结晶过程,随模锻温度升高,合金的软化机制由动态回复逐渐转向动态再结晶。提高等温多向锻道次可提高合金轮毂的力学性能;在相同的等温多向锻道次下,随等温模锻温度升高,合金的力学性能先升高后降低,其中以450℃等温多向锻造6道次并经460℃等温模锻的轮毂性能最佳,最高抗拉强度达到491MPa,伸长率大于12%。

  • 标签: 2A14铝合金 等温复合锻造 动态回复 动态再结晶 显微组织 力学性能
  • 简介:以粒径53~150μm的WC、Cr3C2(Cr3C2质量分数为10%~40%)和NiCrBSi粉末为原料,采用Stellite等离子转移弧(PTA)堆焊系统在45#钢基体上制备焊层。应用金相显微镜、X-射线衍射仪、扫描电镜、硬度计等设备分析焊层的结构和性能。结果表明:NiCrBSi自熔合金焊层组织由γ-(Ni,Fe)和其间弥散分布的CrB和(Cr,Fe,Ni)7C3相组成;Cr3C2加入后,焊层中出现Cr3C2衍射峰。随Cr3C2含量增加,焊层硬度、孔隙率和耐磨性逐渐提高,Cr3C2含量为30%时,硬度和耐磨性均达到峰值。铸造WC加入后,以WC、W2C为主,并有少量(Cr,Fe,Ni)7C3和(Ni,Cr,W)3C产生。Cr3C2含量为40%的Cr3C2焊层较Ni50A焊层耐磨性提高197.6%,比加入相同含量铸造WC焊层耐磨性提高97.6%。Cr3C2、铸造WC加入后,焊层的磨损机理不同:Cr3C2/Ni属于均匀磨损,WC/Ni属于非均匀磨损。

  • 标签: 等离子堆焊 CR3C2 Ni Cr BSI 耐磨性
  • 简介:以纳米Al2O3和纳米Ti(C,N)为主要原料,以Mo和Ni粉等为助烧剂,采用N2气氛保护热压工艺制备Al2O3基复合金属陶瓷模具材料。采用XRD和SEM分析材料的物相组成及微观结构,并测试材料的力学性能。结果表明,当烧结温度为1660℃,纳米Al2O3质量分数为74.5%,纳米Ti(C,N)粉为20%、Mo+Ni粉为5%时,所制备的Al2O3基复合金属陶瓷模具材料性能最佳,其相对密度为98.14%,弯曲强度值为795.98MPa,硬度值为18.52GPa,断裂韧性为8.05MPa·m^1/2。第二相的引入和晶界处Mo+Ni的共同作用,可增强晶界强度,促进沿晶裂纹向穿晶裂纹转变,从而提高材料的力学性能。

  • 标签: 纳米氧化铝 TI(C N) 热压烧结 力学性能 物相组成 显微结构
  • 简介:在316L不锈钢粉末添加Cr2N粉末,采用粉末注射成形工艺制备Cr2N增强奥氏体不锈钢,利用扫描电镜观察与能谱分析以及洛氏硬度测定,研究Cr2N对MIM316L不锈钢组织、成分与硬度的影响,并通过中性盐雾试验研究Cr2N对MIM316L不锈钢抗腐蚀性能的影响。结果表明,316L不锈钢添加Cr2N后,显微组织仍为典型的奥氏体组织,材料的密度与硬度都有所提高。Cr2N添加量为3%时,不锈钢硬度由64.5HRB提升至78HRB,并且不会导致抗腐蚀性能下降。

  • 标签: 金属注射成形 奥氏体不锈钢 硬化 氮化铬
  • 简介:采用溶胶喷雾干燥-煅烧还原方法制备超细/纳米W-La2O3复合粉末,将粉末压制成形后在1950℃烧结,制备La2O3弥散强化钨合金,检测合金的密度与强度,并采用SEM对超细粉末形貌、合金的组织结构、断口形貌进行分析,结果表明:随La2O3加入量增加,粉末颗粒显著细化,W-0.7%La2O3复合粉末的粒径仅为0.1μm;制备的W-La2O3超细/纳米复合粉末具有很高的烧结活性,烧结后,合金最高相对密度达到99.1%;La2O3均匀弥散分布于钨晶界,抑制钨合金的晶粒长大,提高材料的强度,W-0.7%La2O3合金钨平均晶粒尺寸仅为8.7μm,抗弯强度达到548MPa;合金的断裂形式表现为穿晶-沿晶共有的复合断裂形式。

  • 标签: 超细粉末 弥散强化 氧化镧 组织性能
  • 简介:分别以针刺编织预制体(2.5D)和三维编织预制体(3D)为增强体,采用化学气相沉积结合高温熔渗工艺制备2种不同预制体结构的C/C-SiC-ZrC复合材料。利用X射线衍射仪,扫描电镜和能谱分析仪等测试手段,对材料的微观结构进行分析,采用三点弯曲实验和压缩实验研究材料的力学性能,得出不同预制体对最终复合材料断裂性能的影响规律。结果表明:材料中的SiC与ZrC呈偏聚态分布,2.5D复合材料的弯曲强度和压缩强度高达147.38MPa,252.4MPa;与3D复合材料相比,2.5D复合材料强度分别提高了192%和90.7%。这主要是由于2.5D复合材料纤维含量少,孔隙多,反应后密度较高所致。

  • 标签: C C-SiC-ZrC复合材料 预制体结构 断裂性能
  • 简介:以钛粉,硅粉和石墨粉为原料,采用放电等离子烧结技术制备密度为4.14g/cm^3的Ti3SiC2和密度为4.03g/cm^3的0.8Ti3SiC2+0.2SiC复合材料,并以此为基础制备Ti/Ti3SiC2/0.8Ti3SiC2+0.2SiC层状材料。通过扫描电镜(SEM)和X射线衍射仪(XRD)分析材料的显微结构与相组成。结果表明:该层状材料的界面结合紧密,没有明显的孔洞、裂纹等缺陷,各层的相组成符合设计要求。经800℃热处理40h后Ti/Ti3SiC2界面处生成稳定的TiC层,在高温下该层状材料的界面基本稳定。

  • 标签: 层状材料 TI3SIC2 SIC 放电等离子烧结 热稳定性