学科分类
/ 1
3 个结果
  • 简介:赤芍总苷是从赤芍中得到的有效部位,它具有许多的生物学活性。然而,由于其溶解性差,生物利用度也非常低,使其应用受到限制。本研究将赤芍总苷制备成纳米混悬剂以增加溶解度,提高其口服生物利用度。采用沉淀-高压均质法制备赤芍总苷纳米混悬剂。用动态光散射法(DLS)测定其粒径、Zeta电位分别为(210.2±2.5)nm,(–22.4±1.2)mV。差示扫描量热图(DSC)结果显示,TPG在混悬剂中呈晶体状态,晶型并未改变。透射电镜(TEM)结果表明赤芍总苷纳米混悬剂呈球状晶体。采用液相色谱串联质谱法(LC-MS/MS)测定赤芍总苷纳米混悬剂在大鼠体内药物动力学参数,与赤芍总苷混悬液组药物动力学数据相比,AUC0–∞明显增大(约1.85倍),表明赤芍总苷纳米混悬剂可以提高赤芍总苷的生物利用度,是一种很有前景的给药体系。

  • 标签: 赤芍总苷 纳米晶体 高压均质法 药物动力学 生物利用度
  • 简介:目的:制备一种肽修饰羧基化多壁碳纳米管(peptidemodifiedcarboxylatedmultiwalledcarbonnanotubes,MHR)基因载体,考察其对HEK293细胞的转染效率及细胞毒性。方法:将羧化的多壁碳纳米管(MWCNTs)与精氨酸(arginine,R)和组氨酸(histidine,H)组成的短肽(HR)按照一定的质量比反应,通过酰胺键连接得到MHR。采用1H-NMR、红外光谱以及热重分析对其结构进行鉴定。取纯化后的MHR,用激光粒度测定仪测定粒径和zeta电位,凝胶电泳法测定载体MHR对pEGFP质粒的包裹能力。用MHR/pEGFP纳米复合物与HEK293细胞共同培养,考察细胞摄取情况及相关基因转染情况,并测定MHR和MWCNTs-COOH对DU145和RAW264.7细胞的细胞毒性。结果:通过结构鉴定确定MHR合成成功。在氮磷比(N/P)=20时,HEK293细胞对MHR/pEGFP的摄取及转染效率高于其他N/P值时,其中N/P=20时,RAW264.7细胞对MHR/pGL3复合物的摄取率约为单体pGL3的2.4倍,差异具有统计学意义(P〈0.05)。细胞毒性实验表明,MHR作用于DU145和RAW264.7细胞24和48h后,当MHR浓度达640μg/ml时,DU145和RAW264.7细胞的活性仍然〉80%;而MWCNTs-COOH浓度达320μg/ml时,DU145和RAW264.7细胞活性明显降低;当浓度达640μg/ml时,细胞活性低于20%。结论:MHR有望成为一种高效、低毒的基因载体。

  • 标签: 肽修饰羧基化多壁碳纳米管 基因载体 转染 细胞毒性
  • 简介:目的:采用新型聚阳离子载体压缩肿瘤坏死因子相关凋亡诱导配体质粒(plasmidoftumornecrosisfactorrelatedapoptosis-inducingligand,pTRAIL),解决基因药物难以入胞、容易降解的问题,并考察其体外抗肝癌活性。方法:用纳米粒度电位测定仪测定纳米复合物的粒径及电位,琼脂糖凝胶电泳考察硬脂酰多肽(SHR)及硬脂酰多肽聚合物(SHRss)压缩pTRAIL的能力;用激光共聚焦显微镜观察肝癌细胞对SHR/pTRAIL和SHRss/pTRAIL的摄取能力;用CCK-8法检测载体的细胞毒作用及纳米复合物抗肝癌细胞增殖活性。结果:SHR和SHRss具有生物相容性,可以压缩pTRAIL,形成稳定的纳米复合物SHR/pTRAIL和SHRss/pTRAIL。N/P=10时,两种纳米复合物的粒径最小,分别为(306.22±31.64)和(184.41±25.16)nm。交联后的SHRss能够显著增强SHR压缩pTRAIL的能力,增加肝癌细胞的摄取,提高pTRAIL的药效。SHR/pTRAIL和SHRss/pTRAIL分别与HepG2细胞共孵育24h后,细胞存活率分别为(82.58±9.46)%和(65.39±5.43)%。结论:低毒、高效的SHRss/pTRAIL有可能成为一种新型的基因转运复合物用于治疗肝癌。

  • 标签: 肿瘤坏死因子相关凋亡诱导配体质粒 聚阳离子 肝癌 载体