学科分类
/ 1
9 个结果
  • 简介:利用磁谱仪得到不同能量的单能电子束,让这些电子束穿过不同厚度的膜,研究不同能量的电子在膜中的吸收系数和能损,得出吸收系数与电子能量的经验公式,与已有的吸收系数经验公式进行了比较,测量到的能损和Fluka软件模拟计算的结果进行了对比,观察到它们之间都能够较好地符合。说明该实验测量的数据和得到的质量吸收系数公式是可靠的,对β射线的防护具有重要参考价值,Fluka软件能够用于较高能量电子能损的计算。

  • 标签: Β射线 吸收系数 能损
  • 简介:利用RLC双网孔电容耦合电路模拟出了电磁诱导透明现象,并讨论拉比频率改变以及失谐对探测光共振吸收的影响。另外,分析了该模拟实验与真实的电磁诱导透明量子现象的差别及原因。本工作有助于增强学生对电磁诱导透明量子现象的理解。

  • 标签: 电磁诱导透明 拉比频率 RLC耦合电路
  • 简介:运用普适的嵌入原子理论(GEAM)计算了FCC结构金属的嵌入原子模型参数,并用该模型计算了的单空位形成能、双空位结合能、表面能、结构稳定性、弹性常数和声子谱等性质。计算结果与已有的实验结果相符

  • 标签: 普适嵌入原子理论 空位形成能 弹性常数 声子谱
  • 简介:利用电子束蒸发技术在硅衬底上镀一层2.5μm厚的含氢非晶硅薄膜,用氩离子激光器的488nm谱线作激发光线,对a-Si-H薄膜进行辐照,使a-Si-H晶化。其拉曼散射谱和电子衍射谱的结果表明,经激光辐照后,在a-Si-H薄膜中形成纳米硅粒。

  • 标签: 薄膜 激光 纳米硅
  • 简介:分子动力学技术在冲击诱导爆轰领域的应用正在为爆轰相关的物理化学过程带来新的理解。反应力场(ReaxFF)、反应经验键级(REBO)以及反应态加和(RSS)势函数作为从分子层面上揭示冲击起爆内在机制的强有力模型工具,已用在冲击诱导分解研究中观察到初始分子结构的取向相对冲击波传播方向的不同而会呈现不同的响应,受冲击的分子在平动和转动之间转换的同时传递能量。对非均质含能材料冲击起爆的分子模拟则多集中在空洞塌陷和非均质界面的热点成长等问题上。另外,用分子动力学技术对凝聚相爆轰的稳定性进行研究,论证了活化能和爆轰稳定性的关系,并得到二维拱顶石结构和三维湍流图像。就冲击诱导分解、热点机制以及爆轰稳定性在微观层面上的研究加以综述,并试图为理解冲击起爆现象提供补充和思考。

  • 标签: 爆轰 势函数 分子动力学
  • 简介:通过对三结太阳电池进行激光辐照实验,研究了激光辐照引起三结砷化镓(GaAs)太阳电池量子效率谱的变化情况。在功率密度为11.1W·cm~(-2),波长为808nm的激光辐照后,发现顶电池量子效率在吸收波段内降为0,而在吸收波段外出现了量子效率约为10%的异常响应。测量辐照后样品AM0光辐照下的I-V曲线发现,短路电流出现了较为明显的增加。根据量子效率测量原理分析认为,激光诱导的顶电池(限流层)限流失效是导致其吸收波段外量子效率异常增加的主要原因。

  • 标签: 激光辐照效应 三结GaAs太阳电池 量子效率谱
  • 简介:目的:激光诱导火花点火(简称激光点火)是取代传统的靠近缸壁的单点电火花点火以实现稀薄燃烧、提高热效率和改善排放的新型点火方式之一。本文通过对比分析两种点火方式在定容弹中的点火及燃烧过程的压力上升率、最大爆发压力及放热率为激光点火技术在内燃机中的应用提供设计过程的参考依据。创新点:1.同时进行两种点火方式的试验,保证对比研究的准确性;2.激光点火采用532nm和1064nm波长的两种激光进行对比;3.直接采用汽油进行研究。方法:通过记录不同当量比的汽油空气混合气在定容燃烧弹内激光点火(532nm和1064nm波长)及电火花点火的燃烧过程压力变化:1.对比分析三种点火情况的压力上升率和最大爆发压力;2.通过公式计算,对比分析三种点火情况的放热率。结论:1.532n/n与1064nm波长激光点火的压力上升率和最大爆发压力都在当量比为1.8时出现最大值,其中532nm波长激光为39.4MPa/μs和0.68MPa,1064砌波长激光为38.8MPa/las和0.67MPa:而电火花点火的压力上升率和最大爆发压力则在当量比为1.6时出现最大值,分别为38.1MPa/μs和0.67MPa;2.激光点火的稀燃极限相对电火花点火对应的当量比更小;3.三种点火类型的放热率规律与压力上升率变化规律一致。

  • 标签: 激光点火 电火花点火 压力上升率 最大爆发压力 放热率
  • 简介:利用CO2程序升温脱附测定了三种氧化铝基催化剂上的表面碱性。结果表明,三种催化剂上表面碱性的类型、强度和数目分布不同。活性氧化铝上负载K2O和Pt可大大改变催化剂表面碱性分布。三种催化剂上弱碱性中心的CO2脱附表现活化能分别为25.97,27.92和29.77kJ/mol。弱碱性中心是COS水解催化活性中心,而弱的和较强的碱性中心参与CS2的水解催化反应。更多还原

  • 标签: 羰基硫 二硫化碳 水解 氧化铝 催化 碱性