学科分类
/ 1
11 个结果
  • 简介:简要介绍了中堆预研核心机高压涡轮部件的结构:从各组件的形式,联接,定心,传扭,封严及选材等方面分析了该部件的设计特点:并根据试车后解检查的情况得出了研制工作基本成功的结论,认为所取得的经验以后续工作有一定的参考价值。

  • 标签: 跨音速涡轮 涡轮结构 设计 航空发动机
  • 简介:针对某采用小展弦比、复合弯掠等先进技术设计的高负荷高效率压气机级,采用三维CFD软件和一维特性预估程序,对压气机级转、静子叶排特性和级特性进行计算与分析。结果表明:在缺省经验系数下,一维计算结果与三维计算结果相差非常大;在修正经验系数下,总压比、流量、绝热效率的一维计算结果都与三维计算结果基本吻合,由此确定出一维特性计算的经验系数。本研究可为高负荷、高效率压气机特性预估提供技术支持。

  • 标签: 高负荷压气机 小展弦比 复合弯掠技术 一维特性预估 经验系数
  • 简介:基于广义层级优化的思想,提出了本文基于模型的狭义多约束分级优化技术。结合带开口加筋壁板结构优化算例对本文狭义多约束分级优化技术进行了验证。优化结果表明本文分级优化技术可行,具有工程实用价值。

  • 标签: 多约束 分级优化 加筋壁板
  • 简介:本文分析了WP11C发动机滑油系统的热负瞢状况。文中根据发动机的两个典型工况:地面试车95%转速稳定状态以及40%-50%转速慢车状态,通过相关实验数据以及理论估算验证了将滑油箱作为发动机进气道的一部分来分担发动机的热负荷,可有效缓解燃/滑油散热器的散热负担,减小散热面积,从而减轻发动机重量。

  • 标签: 航空发动机 滑油系统 热分析
  • 简介:小型高速大负荷多级轴流式压气机设计中应用了多种先进技术,在其进行总性能参数录取前的机械运行试验中,试验件第一级转子叶片尖部出现多处裂纹。分别对试验现象和结构强度进行分析研究,得出叶片裂纹主要是由于叶片受激励后发生共振致使叶片出现高周疲劳所致。根据故障原因,对该型压气机试验件结构设计方案进行优化,并对优化试验件的总性能参数进行试验录取。结果表明,优化后的压气机试验件运行状态良好,且各项总性能指标表现优异,优化措施可行有效。

  • 标签: 航空发动机 高速轴流压气机 叶片裂纹 排故 试验验证 共振频率
  • 简介:本文利用涡轮设计软件,设计了用于分级循环燃烧火箭发动机的涡轮叶栅。为控制二次流损失,动静叶均采用先进的后加载叶型,静子叶栅采用正弯设计。流场计算结果表明,弯曲静叶整级效率提高0.92%,静叶内部漩涡强度减小,二次流减弱。经涡轮吹风试验验证,其级性能完全满足要求。这也表明后加载叶型及叶片正弯的方法适用于该类型涡轮。

  • 标签: 分级燃烧 液体火箭发动机 涡轮
  • 简介:对高负荷轴流式压气机弦向缝隙叶栅^[1]提出了确定弦向缝隙位置的数学模型,并给出了弦向缝隙叶栅流场计算的方法,作为分析这种叶栅气动性能的基础,风洞吹风试验表明了该模型的正确性及弦向缝隙叶栅对轴流式压气机气动性能的改善。

  • 标签: 轴流式压气机 弦向缝隙叶栅 附面层 气体动力学 风洞试验
  • 简介:恒压挤压式姿态控制系统一般采用压力调节器对气瓶中的高压气体进行调节,并采用安全阀保证系统的安全。设计时一般保证压力调节器节流口在任何情况下均为临界截面,气体通过压力调节器节流口后压力降低,一般远高于大气压力。由于节流口后气流涡流和管路摩擦的作用,气流在到达安全阀排放口后,仍然为临界流动状态。因此,可以采用收缩喷嘴节流公式计算压力调节器节流口和安全阀排放口的压力和流量参数。根据该数学模型,计算了姿态控制系统安全阀前气体压力和流量,试验结果表明所采用的计算方法可行。

  • 标签: 姿态控制系统 压力调节器 安全阀 排放
  • 简介:本文通过简介系统安全工程的概念、历史及发展趋势,以及系统安全工程的核心——危险分析方法,启示我们如何借鉴国外在航天产品研制中的经验,做好航天产品研制中的安全性评估工作,预防航天产品研制过程中的事故,保证各项任务的顺利完成。

  • 标签: 系统安全工程 危险分析 安全性评估
  • 简介:针对某型运载火箭液氧贮箱氧自生增压用不锈钢管道的安全性,进行了分析与试验研究。通过机理分析,认为管道系统中存在的多余物是影响系统安全的主要因素之一。设计了一套掺杂高温氧气流安全性试验系统,为确保试验系统安全,采用水浴换热器对氧气加热,并在高温氧气流进入试验件前掺入杂质颗粒。氧自身增压管道试验件入口温度范围为380~410K,入口压力为1MPa。多余物颗粒为增压管道中常有的5种金属材料,粒径范围10~500μm。搭建了试验系统,并开展了两轮时长为400s的高温氧气流掺杂试验。试验结果表明,不锈钢管道可以适应运载火箭氧自生增压系统工况,受控状态下掺入少许金属颗粒的高温氧气流不会造成管道烧蚀或燃爆事故。试验表明,采用水浴加热方式可以安全地获得高温氧气流,可为类似系统借鉴。

  • 标签: 运载火箭 氧气自生增压 不锈钢管道 试验系统