学科分类
/ 19
369 个结果
  • 简介:以Fe、Al元素粉末为原料,采用粉末冶金法,通过偏扩散/反应合成烧结,制备FeAl金属间化合物多孔材料。通过XRD、SEM、EDS等表征手段,研究多孔试样烧结过程中基础元素挥发及孔结构变化行为,并进行室温状态下腐蚀实验。结果表明,在1000~1300℃之间,随温度升高,试样在真空烧结过程中质量损失率升高,在最终烧结温度为1300℃、保温4h条件下,质量损失率为10.5%;而试样在氩气氛烧结过程中,随温度升高试样质量几乎没有变化;氩气氛烧结条件下制备FeAl多孔材料腐蚀性能明显优于真空条件下制备多孔试样。氩气氛条件下烧结制备FeAl金属间化合物多孔材料能够避免真空烧结过程中Al元素挥发,从而有效提高FeAl金属间化合物多孔材料腐蚀性能。

  • 标签: 氩气氛烧结 FeAl多孔材料 Al元素挥发 水腐蚀
  • 简介:以Fe、Al元素混合粉末为原料,采用粉末冶金法,通过偏扩散/反应合成—烧结,制备Fe-Al金属间化合物多孔材料。根据烧结前后多孔试样质量变化,并结合XRD、SEM、EDS等测试手段,对烧结过程中多孔试样基础元素挥发行为及孔结构变化进行研究。结果表明,真空烧结元素粉末制备Fe-Al多孔材料过程中,最终烧结温度为1000℃、保温4h时,Fe-Al多孔试样质量损失率为0.05%,而最终烧结温度为1300℃时质量损失率达到10.53%;随着最终烧结温度升高,合金元素沿孔壁表面挥发程度增大,导致Fe-Al多孔试样孔径、开孔隙率透气度变大。采用MIEDEMA模型LANGMUIR方程,对真空烧结过程中质量损失原因进行理论分析,表明Al挥发导致多孔试样质量孔结构变化主要原因。

  • 标签: 真空烧结 金属间化合物 FE-AL 多孔材料 挥发
  • 简介:β-Ti型结构钛基材料在生物材料领域具有广泛应用前景。本文采用机械合金化法放电等离子烧结制备β-Ti型Ti-Nb基合金,研究不同Nb,Fe含量对合金显微组织及力学性能影响。利用扫描电镜(SEM)、X射线衍射仪(XRD)透射电镜(TEM)等手段分析合金显微组织变化情况。结果表明:机械合金化过程中,粉末平均粒度减小,当球磨时间超过60h时粉末易发生团聚。当球磨转速为300r/min,球料比为12:1,TiNb质量分数分别为64%24%时,球磨100h后制备粉体材料中具有定体积非晶相。该粉末在1000℃下通过放电等离子烧结(SPS)制备具有均匀细小球状晶粒组织Ti-Nb合金,其强度、伸长率弹性模量分别为2180MPa,6.7%55GPa。通过控制Nb,Fe含量,可以促进β-Ti相形成,获得高强度低杨氏模量Ti-Nb合金。

  • 标签: 机械球磨 放电等离子烧结 钛合金 显微组织 力学性能
  • 简介:研究了TiO2、MgO、Fe203等不同烧结助剂、烧结温度及保温时间对BeO陶瓷密度热导率影响,结果表明:添加Fe203MgO试样具有最高密度(2.799g,cm^-3)最高热导率(181.6W·m^-1.K^-1);同时在相同保温时间下,其密度热导率随烧结温度升高而增大;在相同烧结温度下,其密度热导率随保温时间延长而增大,但是增量比较小。运用黄培云粉末烧结综合作用理论方程验证BeO烧结坯密度烧结温度之间对应关系,并从显微组织理论上解释影响热导率原因。

  • 标签: BeO瓷 烧结助剂 烧结工艺 密度 热导率
  • 简介:本文综述了ITO薄膜应用领域制备工艺。ITO薄膜主要用于光电器件中,例如用于液晶显示(LCD)。制造ITO薄膜工艺方法很多,本文综述了磁控溅射法、CVD法、喷雾热分解法溶胶—凝胶法4制膜工艺。

  • 标签: ITO薄膜 应用 制备工艺
  • 简介:以V、AlC粉末为原料,采用燃烧反应合成技术制备V2AlC材料,比较了2燃烧合成方式,即热爆合成与自蔓延高温合成工艺对反应合成V2AlC影响。对V-Al-C体系进行热力学分析,利用X射线衍射扫描电镜对合成产物进行物相组成产物形貌分析,探讨反应合成V2AlC材料反应机制。研究结果表明,2V/Al/C粉体热爆合成产物主相为V2AlC少量VCxAlV3。2V/Al/C热爆产物中V2AlC晶粒呈板条状形貌,长度约为10μm。原料中添加过量Al,可消除AlV3副产物,并可显著促进V2AlC合成,但不会形成单相V2AlC。添加适量Sn可促进单相V2AlC合成。2V/Al/C粉体自蔓延高温合成产物主相为V2AlC,少量为VC0.75。原料中添加过量Al,可促进V2AlC单相反应合成。2V-Al-C体系绝热燃烧温度达2767K。并提出反应合成V2AlC反应机制,即VC与V-Al液相反应合成板条状晶粒V2AlC材料。

  • 标签: V2AlC 燃烧反应 合成
  • 简介:采用多靶磁控溅射技术,制备TiCN、VCN单层膜及系列调制比为1不同调制周期TiCN/VCN多层膜。利用X射线衍射仪、纳米压痕仪、高温摩擦磨损测试仪和扫描电子显微镜,研究各种薄膜微结构、力学性能及室温和高温摩擦磨损性能。研究表明:不同调制刷期TiCN/VCN多层膜硬度围绕混合法则计算硬度值上下波动,没有出现致硬现象。TiCNVCN单层薄膜室温下摩擦因数很低,TiCN/VCN多层膜调制周期较小时摩擦因数较高,调制周期大于10nm时摩擦因数逐渐接近TiCNVCN单层膜。700℃下,TiCN/VCN多层膜摩擦因数主要取决于表面生成TiO2v205共同作用,与TiCN相比,TiCN/VCN多层膜高温摩擦因数较小。

  • 标签: TICN VCN 磁控溅射 力学性能 摩擦磨损性能
  • 简介:以Mo、Nb、Si、Al元素粉末为原料,采用燃烧合成法制备名义成分分别为(Mo0.97Nb0.03)(Si0.97Al0.03)2、(Mo0.94Nb0.06)(Si0.97Al0.03)2、(Mo0.91Nb0.09)(Si0.97Al0.03)2与(Mo0.88Nb0.12)(Si0.97Al0.03)2等4不同化含量合金,研究其燃烧合成行为,分析燃烧合成过程中粉末压坯燃烧模式、燃烧温度、燃烧波前沿蔓延速率以及产物组成。结果表明:随Nb含量增加,燃烧合成反应模式由螺旋燃烧逐渐转变为稳态燃烧。添加Nb、Al后,合金最高燃烧温度升高,并随Nb含量增加呈现先升高后降低变化趋势,其中(Mo0.91Nb0.09)(Si0.97Al0.03)2燃烧温度最高,达到1924K,但燃烧波蔓延速率随Nb含量增加而逐渐降低。XRD结果表明:(Mo0.97Nb0.03)(Si0.97Al0.03)2合金主要由MoSi2构成,含有少量Mo(SiAl)2Mo5Si3;(Mo0.94Nb0.06)(Si0.97Al0.03)2中开始出现NbSi2相,(Mo0.91Nb0.09)(Si0.97Al0.03)2(Mo0.88Nb0.12)(Si0.97Al0.03)2合金中Mo5Si3衍射峰强度进步降低,而NbSi2衍射峰略有增强,因而添加Nb有利于形成C40结构NbSi2,同时抑制Mo5Si3产生。SEM观察表明合金为多孔结构。

  • 标签: 金属间化合物 二硅化钼 合金化 燃烧合成 组织结构
  • 简介:对新型热电池阳极材料Li-B合金中耐热骨架LiB化合物进行了晶体结构测定形貌观察,获得了该化合物完整X射线衍射谱线,经过XRD谱衍射强度计算电子密度函数分析,确定该化合物化学组成为LiB,属于六方晶系,空间群为No.194,晶格常数α=0.4022nm,c=0.2796nm;单中原子坐标B1(0,0,0),B2(0,0,1/2),Li1(2/3,1/3,0),Li2(1/3,2/3,1/2),理论密度d=1.50g/cm3,电子密度函数分析表明LiB化合物中Li原子电子向B原子迁移,B原子之间高密度电子云区,呈共价键特征,SEM观察结果表明,LiB化合物呈纤维状,合金经轧制后纤维沿轧向排列,X射线平板照相实验结果表明它具有丝织构特征,其衍射花样也与本结构模型计算结果致。

  • 标签: LiB化合物 LI-B合金 晶体结构
  • 简介:采用厚20μm非晶态Ti-Zr-Ni-Cu钎料,真空钎焊连接用于聚变堆面向等离子体部件铜铬锆合金,钎焊温度分别为860、880900℃,对880℃下钎焊样品进行热等静压(HIP)处理。采用SEMEDS分析连接接头形貌成分,用静载剪切法测量焊接接头强度。测试结果表明在860~880℃下钎焊10min能够获得较好连接界面,经880℃钎焊后焊接接头剪切强度为16.57MPa,880℃钎焊后HIP处理试样界面结合强度提高142.73MPa,说明真空钎焊后HIP处理可以显著改善接头结合强度。

  • 标签: 铜铬锆合金 真空钎焊 非晶态Ti-Zr-Ni-Cu钎料
  • 简介:在球径、转速球料比相同情况下,分别采用溶剂汽油甲苯作为滚动球磨液体介质,对Sm(Co,Fe,Cu,Zr)7.4合金粉进行了系列试验.测定了2介质环境下,试样粒度及氧含量与球磨时间关系.结果发现,采用溶剂汽油作为液体介质时,较强静电排斥力有利于球磨过程中粉末颗粒分散,促进粉末细化.

  • 标签: 球磨 液体介质 粒度
  • 简介:选取相成分单氢钨青铜(H0.33WO3)、铵钨青铜((NH4)0.5WO3)紫钨(WO2.72)作为原料,研究钨原料对制取超细钨粉影响;对氧化钨原料超细钨粉粒度测量方法作了比较,研究结果表明:紫钨由于有着特殊结构,其制得钨粉细而均匀,分散性好,适合于做微晶硬质合金原料;对于氧化钨原料粒度(伪同晶颗粒尺寸,即次颗粒)测量,推荐使用激光衍射法;对于超细钨粉粒度(次颗粒)炉前测量,BET法测球形相当径相当理想。

  • 标签: 超细钨粉 氧化钨 粒度测量
  • 简介:以四氯化锡氨水作为原料,采用水热合成法制备SnO2纳米粉体。探讨反应溶液浓度、热合成温度、热合成时间初始溶液pH值对纳米SnO2粉体性能及形貌影响规律,并确定最佳工艺参数,同时对热合成过程中出现SnO2纳米棒异常现象进行初步分析。结果表明:采用水热合成法制备SnO2纳米粉体均为四方晶系金红石型结构,粉末粒径为5~12nm,呈近球形。在反应溶液浓度0.5~2.0mol/L条件下,随反应溶液浓度升高,制备粉体晶粒平均粒径呈线性增长;在热合成温度160~220℃范围内,随温度升高,SnO2粉体平均粒径从5.1nm增大到9.8nm,在200℃时会出现降低;在热合成时间6~30h条件下,随反应时间延长,SnO2粉体平均粒径增大,在20h时降低;随溶液pH值升高,制备粉体晶粒平均粒径减小。在1.0mol/L、pH值10反应溶液中,在200℃保温20h工艺条件下进行热合成反应,所制备粉体平均粒径为5.5~8.5nm,粉体均匀性分散性良好。

  • 标签: 水热合成 SNO2 纳米粉体 制备 粒径
  • 简介:采用超高重力场燃烧合成工艺,并从500g到2500g每间隔500g依次增大超重力场加速度,制备系列TiC-TiB2凝固陶瓷。经XRD、FESEMEDS分析,发现陶瓷显微组织均由片晶TiB2基体相、不规则TiC第相及少量Al2O3夹杂与Cr基金属相组成。增大超重力场加速度,反应熔体内部各组份之间对流(Stokes)加强,可加快Al2O3液滴上浮与分离,促进TiC-TiB2-Me液相成分均匀化,使陶瓷显微组织得以细化,且当超重力场加速度超过2000g时,出现TiB2片晶厚度小于1μm超细晶组织,同时随陶瓷基体上Al2O3夹杂量降低、TiB2片晶异常长大弱化,陶瓷组织均匀性提高。经FESEM断口形貌与裂纹扩展观察,发现TiB2基体相裂纹桥接与拔出,并耦合晶间Cr基延性相增韧构成陶瓷复合增韧机制,且随超重力场加速度增大,陶瓷致密性与组织均质性得以提升,不仅促进TiB2基体相裂纹桥接与拔出,而且可增大Cr基延性对陶瓷增韧贡献,使得陶瓷弯曲强度与断裂韧性分别同时达到最大值(975±16)MPa(16.8±1.2)MPa·m^1/2。

  • 标签: TiC-TiB2复合陶瓷 超高重力场 燃烧合成 组织均质性 断裂行为
  • 简介:研究了硼铁含量粒度对铁铜基摩擦材料性能影响.研究发现,当硼铁粒度为<300μm时,摩擦因数随硼铁质量分数(0~10%)增加而增加;摩擦材料磨损在制动压力为0.6MPa时,摩擦因数随硼铁增加而有所下降,当压力增加到1.1MPa时,材料磨损随硼铁增加而增加;当硼铁量为2.5%时,摩擦因数磨损随细粒度(<45μm)硼铁增加而下降.研究还发现,摩擦材料中硼铁在烧结过程中与铁反应形成了Fe2B,这种Fe2B,起到提高摩擦因数,降低材料磨损作用.

  • 标签: 铁铜基摩擦材料 摩擦磨损性能 硼铁量 硼铁粒度
  • 简介:将T700或Nicalon-SiC短纤维、碳粉、硅粉少量碳化硅粉混合,在1900℃热压烧结制备短纤维增强C-SiC复合材料,并对其组织、结构及性能进行了研究.结果表明:SiCf/C-SiC相对密度室温强度分别为95.3%24.38MPa,均高于Cf/C-SiC相对密度室温强度,热压烧结过程中Cf损伤严重.短纤维增强C-SiC复合材料中,由于C相SiC相同时存在,在同温度下氧化行为表现为在氧化初期氧化质量损失率较大,C相氧化起主要作用;随氧化时间增长,氧化质量损失率逐渐减小;在氧化后期则质量增加,SiC相惰性氧化起主要作用.SiCf/C-SiC复合材料抗氧化性能优于Cf-C-SiC复合材料抗氧化性能.SiCf/C-SiC复合材料在温度为1100℃~1400℃时,温度越高,氧化质量损失率越小,抗氧化性能越强.

  • 标签: 复合材料 短纤维 热压烧结 强度 抗氧化性能
  • 简介:Zn合金在耐磨零件方面应用广泛。本文利用SEM、EDS、A-200布洛维硬度计、JR-3激光导热仪、UMT-3摩擦试验机等试验手段,研究铁元素添加量对铸态ZA27合金摩擦磨损性能影响,并探讨其磨损机理。结果表明,随着铁元素含量增加,合金硬度不断提高,导热系数降低。摩擦因数、质量磨损均随铁元素含量增加呈现先升高后降低趋势。摩擦过程中,合金摩擦表面层发生系列物理化学变化,逐渐形成摩擦层。铁含量为1.5%时,锌合金具有较好耐摩擦磨损性能。

  • 标签: ZA27合金 硬度 导热系数 摩擦磨损性能
  • 简介:采用粉末冶金方法制备含Y2O3稀土钼合金,利用金相显微镜、扫描电子显微镜(SEM)、X射线衍射(XRD)、能谱分析(EDS)等手段对钼合金断裂特征组织结构进行对比分析,研究稀土氧化物Y2O3含量对钼合金组织性能影响。研究表明:添加Y2O3能细化晶粒、改善钼合金晶粒均匀性致密度、提高钼合金性能;拉伸强度屈服强度随Y2O3含量增加呈现先增高后降低趋势,在Y2O3含量为1%时,抗拉强度达511.43MPa,屈服强度456.99MPa,分别是纯钼材料1.31倍1.57倍,综合力学性能最佳;在烧结坯中,Y2O3颗粒分布均匀,主要以球形等轴状形式存在于晶界上。

  • 标签: 稀土氧化物Y2O3 钼合金 晶粒尺寸
  • 简介:采用氢化钛粉代替钛粉,与镁粉混合高能球磨,研究球磨工艺参数对粉末性能影响。采用机械合金化法这种非平衡态粉末冶金方法,通过高能球磨粉末,提高Mg在Ti中固溶度。利用激光粒度仪、X线衍射仪、扫描电镜等测试分析仪器表征粉末性能。研究发现,随球磨时间延长,混合粉末粒径逐渐变小,确定16h为最佳球磨时间。Mg衍射峰随球磨时间增加而逐渐减弱,球磨8h后基本消失,表明球磨过程可促使TiMg原子合金化。选取4%(质量分数)硬脂酸作为过程控制剂,能有助于减小颗粒尺寸且能有效防止粉末冷焊,粉末收得率提高73.3%。

  • 标签: 钛镁合金 球磨 过程控制剂 氢化钛 镁粉
  • 简介:利用永磁搅拌近液相线铸造普通铸造方法制备不同晶粒尺寸2024铝合金铸锭,利用Gleeble-1500热模拟试验机研究初始晶粒尺寸对不同压缩变形条件下2024铝合金热变形行为变形后显微组织影响。研究表明:2024铝合金热变形行为依赖于变形条件初始组织。初始晶粒尺寸对流变应力影响:当应变速率小于0.1s-1时,流变应力随晶粒尺寸减小而减少;当应变速率为10s-1时,流变应力随晶粒尺寸减小而增大。降低变形温度会弱化晶粒尺寸对流变应力影响。热压缩流变应力随应变速率增大而增大,随变形温度升高而减小。应变速率为10s-1时,热压缩应力应变曲线呈现周期性波动;只在粗晶2024铝合金中发现变形剪切带。

  • 标签: 晶粒尺寸 热变形 显微组织 2024铝合金 铸造