学科分类
/ 1
2 个结果
  • 简介:地下断层深度的估算是重力解释难题之一,我们试利用支持向量分类(SvC)法进行计算。使用正演和非线性反演技术,通过相关误错使检测地下断层深度成为可能。但必要有一个深度初始猜测值,而且这猜测值通常不是由重力资料得。本文我们介绍以SVC作为利用重力数据估算断层深度的一种手段。在这项研究中,我们假设一种地下断层深度可归为一种类型,SVC作为一个分类算法。为了有效地利用此SVC算法,我们基于一个正确的特征选择算法去选择正确的深度特征。本次研究中我们建立了一套基于不同深度地下断层的合成重力剖面训练集,用以训练用于计算实际的地下断层深度的SVC代码。然后用其它合成重力剖面训练集测试我们训练的SVC代码,同时也用实际资料验证了我们的训练SVC代码。

  • 标签: 深度计算 地下断裂 支持向量分类 (SVC) 特征 特征选择
  • 简介:地震数据规则化是地震信号处理中一个重要步骤,近年来受到广泛关注的压缩感知技术已经被应用到地震数据规则化中。压缩感知技术突破了传统的Shannon-Nyqiust采样定理的限制,可以用采集的少量地震数据重构完整数据。基于压缩感知技术的地震数据规则化质量主要受三个因素影响,除了受地震信号在不同变换域的稀疏表达和11范数重构算法的影响外,极大地取决于地震道随机稀疏采样方式。尽管已有学者开展了2D地震数据离散均匀分布随机采样方式研究,但设计新的稀疏采样方案仍然很有必要。在本文中,我们提出满足Bernoulli分布规律的Bernoulli随机稀疏采样方式和它的抖动形式。对2D数值模拟数据进行四种随机稀疏采样方案和两种变换(Fourier变换和Curvelet变换)实验,对获取的不完整数据应用11范数谱投影梯度算法(SPGL1)进行重构。考虑到不同随机种子点产生不同约束矩阵R会有不同的规则化质量,对每种方案和每个稀疏采样因子进行10次规则化实验,并计算出相应信噪比(SNR)的平均值和标准偏差。实验结果表明,我们提出的新方案好于或等于已有的离散均匀分布采样方案

  • 标签: 插值 稀疏采样 变换 重构 稀疏性